In order to eliminate mal-distribution and ensure the side arm to produce desirable gas quality a special distributor is proposed. The experimental distributor mainly consists of a straight through section,a gas extra...In order to eliminate mal-distribution and ensure the side arm to produce desirable gas quality a special distributor is proposed. The experimental distributor mainly consists of a straight through section,a gas extraction line,a liquid extraction line and a side arm branch. A gas orifice and a liquid orifice are mounted at the gas and liquid extraction line respectively to control the outlet gas quality. The diameter of the liquid orifice was set to 2. 50 mm and three gas orifices with different size( dG= 2. 65,5. 00,10. 00 mm) were tested. The experiments were carried out at an air-water two-phase flow loop. The gas superficial velocity ranged from 6. 0 to 20. 0 m /s and the liquid superficial velocity was in the range of 0. 02- 0. 18 m /s. Flow patterns such as wave flow,slug flow and annular flow were observed. The gas quality of the side arm branch was found mainly determined by the flow area ratio of the gas orifice to the liquid orifice and independent of gas and liquid superficial velocity,flow patterns and extraction flux.展开更多
A separated flow model with stochastical trajectories has been developed to describe the fluid flow in a bubble stirred ladle.The bubble dispersion,turbulent characteristics and gas-liquid interactions can be predicte...A separated flow model with stochastical trajectories has been developed to describe the fluid flow in a bubble stirred ladle.The bubble dispersion,turbulent characteristics and gas-liquid interactions can be predicted by this mathematical model.The bubble flow as a dispersed phase is treated in a Lagrangian frame of reference and the analysis of the turbulent flow for liquid phase is conducted in a Eulerian field.The interactions between bubbles and liquid phases are considered as a bubble source term in the control equation for a continuous phase. The Monte Carlo sampling method is used to determine the bubble trajectories.The homoge- neous flow model is also taken into consideration so that it can be compared with the sepa- rated flow model.Numerical predictions using a water model of a ladle show that the pre- dicted results of the separated flow model agree satisfactorily with the experimental results, but the prediction of the homogeneous flow model are not in good agreement with the experi- mental results.展开更多
A gas liquid centrifugal separator is widely used in industry on account of its simple geometry and little maintenance. These separators have considerable advantages over filters, scrubbers or precipitators in term of...A gas liquid centrifugal separator is widely used in industry on account of its simple geometry and little maintenance. These separators have considerable advantages over filters, scrubbers or precipitators in term of compact design, lower pressure drop and higher capacity. A gas liquid centrifugal separator is a device that utilizes centrifugal forces and low pressure caused by rotational motion to separate liquid from gas by density differences. Efficient and reliable separation is required for the optimum operation. These separators are often operated at less than peak efficiency due to the entrainment of separated liquid through an outlet pipe which is closely associated with the very complicated flow phenomena involved. Design parameters such as length of the separation space, vane exit angle, inlet to outlet diameter ratio, models for separation efficiency and pressure drop as a function of physical dimensions are not available in literature. This leaves the designer with very little to go on except known designs and experimentation. The aim of present study is to perform a parametric study to get higher efficiency for gas-liquid separator. A parametric study has been carded out with the help of CFD tools to analyze a separation performance of a centrifugal separator by varying the length of separator space. The best design parameters are analyzed based upon obtained results, tangential velocities, vortices, total pressure losses. From the present study several attempts are made to improve the performance of conventional centrifugal separators.展开更多
All existing proton exchange membrane (PEM) fuel cell gas flow fields have been designed on the basis of single-phase gas flow distribution. The presence of liquid water in the flow causes non-uniform gas distributi...All existing proton exchange membrane (PEM) fuel cell gas flow fields have been designed on the basis of single-phase gas flow distribution. The presence of liquid water in the flow causes non-uniform gas distribution, leading to poor cell performance. This paper demonstrates that a gas flow restrictor/distributor, as is commonly used in two-phase flow to stabilize multiphase transport lines and multiphase reactors, can improve the gas flow distribution by significantly reducing gas real-distribution caused by either non-uniform water formation in parallel flow channels or flow instability associated with negative-slope pressure drop characteristic of two-phase horizontal flow systems.展开更多
Axial cyclone separator has been widely applied in chemical production as an efficient gas-liquid separation device.In this study,a new axial cyclone separator with integrated swirler and exhaust pipe is designed to a...Axial cyclone separator has been widely applied in chemical production as an efficient gas-liquid separation device.In this study,a new axial cyclone separator with integrated swirler and exhaust pipe is designed to achieve the development goal of compact structure for advanced engine,and the distribution characteristics of swirling flow patterns as well as the variation in separation characteristics are investigated under slug flow pattern.Based on flow visualizations and fluctuation characteristics of pressure signals,three typical flow patterns,namely,slug flow,swirling intermittent flow,and swirling annular flow,in the horizontal swirling separation flow are characterized.It is investigated how the inlet conditions affect the separation characteristic parameters.The separation purity and extreme points of the air separation efficiency are independent of the inlet liquid flow rate.The separation pressure drop is quadratically related to the inlet air flow rate.Based on the drift-flux model and other methods,the prediction methods for the air separation efficiency and pressure drop are proposed,and the prediction accuracy is within±20%,which may provide instructions for the practical application of axial cyclone separator.展开更多
The gas-liquid two-phase flow patterns of a centrifugal pump during the self-priming process were investigated numerically and experimentally.The Euler-Euler multiphase model and SST k-ω turbulence model were applied...The gas-liquid two-phase flow patterns of a centrifugal pump during the self-priming process were investigated numerically and experimentally.The Euler-Euler multiphase model and SST k-ω turbulence model were applied for simulating the self-priming process.Meanwhile,the changes of motor speed and self-priming height were considered in the simulation.The overall transient two-phase flow features and water level distributions were mapped.Results showed that the self-priming process was divided into three stages.The liquid level in inlet-pipe rose in oscillation during self-priming process.The variations of water level during self-priming process of numerical simulation and test result agreed well.The inlet-pipe(Ver)was filled at 22 s and 24 s respectively numerically and experimentally.The bubble cloud circulated in the volute during middle stage of self-priming process,and breakup into smaller bubbles by shear force and tongue,and then discharged into chamber.The bubbles in the outlet-pipe mainly included bubbly flow and slug flow at the last stage of self-priming process,which is morphologically consistent with the test results.Also,during the self-priming process,the reflux liquid was pressed by blades and fully mixed with gas;that is the way to realizing the function of self-priming.展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No.51006123)the Fundamental Research Funds for the Central Universities (Grant No.14CX05028A)
文摘In order to eliminate mal-distribution and ensure the side arm to produce desirable gas quality a special distributor is proposed. The experimental distributor mainly consists of a straight through section,a gas extraction line,a liquid extraction line and a side arm branch. A gas orifice and a liquid orifice are mounted at the gas and liquid extraction line respectively to control the outlet gas quality. The diameter of the liquid orifice was set to 2. 50 mm and three gas orifices with different size( dG= 2. 65,5. 00,10. 00 mm) were tested. The experiments were carried out at an air-water two-phase flow loop. The gas superficial velocity ranged from 6. 0 to 20. 0 m /s and the liquid superficial velocity was in the range of 0. 02- 0. 18 m /s. Flow patterns such as wave flow,slug flow and annular flow were observed. The gas quality of the side arm branch was found mainly determined by the flow area ratio of the gas orifice to the liquid orifice and independent of gas and liquid superficial velocity,flow patterns and extraction flux.
文摘A separated flow model with stochastical trajectories has been developed to describe the fluid flow in a bubble stirred ladle.The bubble dispersion,turbulent characteristics and gas-liquid interactions can be predicted by this mathematical model.The bubble flow as a dispersed phase is treated in a Lagrangian frame of reference and the analysis of the turbulent flow for liquid phase is conducted in a Eulerian field.The interactions between bubbles and liquid phases are considered as a bubble source term in the control equation for a continuous phase. The Monte Carlo sampling method is used to determine the bubble trajectories.The homoge- neous flow model is also taken into consideration so that it can be compared with the sepa- rated flow model.Numerical predictions using a water model of a ladle show that the pre- dicted results of the separated flow model agree satisfactorily with the experimental results, but the prediction of the homogeneous flow model are not in good agreement with the experi- mental results.
文摘A gas liquid centrifugal separator is widely used in industry on account of its simple geometry and little maintenance. These separators have considerable advantages over filters, scrubbers or precipitators in term of compact design, lower pressure drop and higher capacity. A gas liquid centrifugal separator is a device that utilizes centrifugal forces and low pressure caused by rotational motion to separate liquid from gas by density differences. Efficient and reliable separation is required for the optimum operation. These separators are often operated at less than peak efficiency due to the entrainment of separated liquid through an outlet pipe which is closely associated with the very complicated flow phenomena involved. Design parameters such as length of the separation space, vane exit angle, inlet to outlet diameter ratio, models for separation efficiency and pressure drop as a function of physical dimensions are not available in literature. This leaves the designer with very little to go on except known designs and experimentation. The aim of present study is to perform a parametric study to get higher efficiency for gas-liquid separator. A parametric study has been carded out with the help of CFD tools to analyze a separation performance of a centrifugal separator by varying the length of separator space. The best design parameters are analyzed based upon obtained results, tangential velocities, vortices, total pressure losses. From the present study several attempts are made to improve the performance of conventional centrifugal separators.
基金support from the Natural Sciences and Engineering Research Council(NSERC) of Canada
文摘All existing proton exchange membrane (PEM) fuel cell gas flow fields have been designed on the basis of single-phase gas flow distribution. The presence of liquid water in the flow causes non-uniform gas distribution, leading to poor cell performance. This paper demonstrates that a gas flow restrictor/distributor, as is commonly used in two-phase flow to stabilize multiphase transport lines and multiphase reactors, can improve the gas flow distribution by significantly reducing gas real-distribution caused by either non-uniform water formation in parallel flow channels or flow instability associated with negative-slope pressure drop characteristic of two-phase horizontal flow systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.51888103 and 52076175)the Fundamental Research Funds for the Central Universities。
文摘Axial cyclone separator has been widely applied in chemical production as an efficient gas-liquid separation device.In this study,a new axial cyclone separator with integrated swirler and exhaust pipe is designed to achieve the development goal of compact structure for advanced engine,and the distribution characteristics of swirling flow patterns as well as the variation in separation characteristics are investigated under slug flow pattern.Based on flow visualizations and fluctuation characteristics of pressure signals,three typical flow patterns,namely,slug flow,swirling intermittent flow,and swirling annular flow,in the horizontal swirling separation flow are characterized.It is investigated how the inlet conditions affect the separation characteristic parameters.The separation purity and extreme points of the air separation efficiency are independent of the inlet liquid flow rate.The separation pressure drop is quadratically related to the inlet air flow rate.Based on the drift-flux model and other methods,the prediction methods for the air separation efficiency and pressure drop are proposed,and the prediction accuracy is within±20%,which may provide instructions for the practical application of axial cyclone separator.
基金supported by the National Natural Science Foundation of China(51609212,51606167,51779226 and 51976193)。
文摘The gas-liquid two-phase flow patterns of a centrifugal pump during the self-priming process were investigated numerically and experimentally.The Euler-Euler multiphase model and SST k-ω turbulence model were applied for simulating the self-priming process.Meanwhile,the changes of motor speed and self-priming height were considered in the simulation.The overall transient two-phase flow features and water level distributions were mapped.Results showed that the self-priming process was divided into three stages.The liquid level in inlet-pipe rose in oscillation during self-priming process.The variations of water level during self-priming process of numerical simulation and test result agreed well.The inlet-pipe(Ver)was filled at 22 s and 24 s respectively numerically and experimentally.The bubble cloud circulated in the volute during middle stage of self-priming process,and breakup into smaller bubbles by shear force and tongue,and then discharged into chamber.The bubbles in the outlet-pipe mainly included bubbly flow and slug flow at the last stage of self-priming process,which is morphologically consistent with the test results.Also,during the self-priming process,the reflux liquid was pressed by blades and fully mixed with gas;that is the way to realizing the function of self-priming.