Fibrous filters are often used to remove contaminants including both dusts and liquid droplets from natural gas. This paper aims to evaluate the gas-liquid separation performance of three types of cartridge filters us...Fibrous filters are often used to remove contaminants including both dusts and liquid droplets from natural gas. This paper aims to evaluate the gas-liquid separation performance of three types of cartridge filters used in the West-East natural gas transmission project. The comparison of the original pressure drop of clean filters and the evolution of pressure drop as liquid droplets deposited in the filter media are described. The original pressure drops of these filters were similar but the pressure drops at a steady state were different. Fractional efficiency was used to study the separation performance of cartridge filters. Droplets at the outlet of the filters had small diameters, no more than 3 μm, but were very numerous. The effect of filtration velocity on gas-liquid separation performance was analyzed. Higher filtration velocity indicated better gas-liquid separation performance. Finally the quality factor related to pressure drop and filtration efficiency was applied to evaluate the gas-liquid separation performance.展开更多
Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement e...Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement efficiency,owing to the single gas sensor without the identification ability of multiple gases.In this work,a novel gas-liquid Raman detection method of monitoring the multi-component dissolved gases was proposed based on a continuous gas-liquid separator under a large difference of partial pressure.The limit of detection(LOD)of the gas Raman spectrometer could arrive at about 14 μl·L^(-1)for N_(2)gas.Moreover,based on the continuous gas-liquid separation process,the detection time of the dissolved gases could be largely decreased to about 200 s compared with that of the traditional detection method(30 min).Effect of equilibrium time on gas-liquid separation process indicated that the extracted efficiency and decay time of these dissolved gases was CO_(2)>O_(2)>N_(2).In addition,the analysis of the relationship between equilibrium time and flow speed indicated that the decay time decreased with the increase of the flow speed.The validation and application of the developed system presented its great potential for studying the components and spatiotemporal distribution of dissolved gases in seawater.展开更多
A significant development in the theory of countercurrent extraction will be presented in this article. New expressions of the term in countercurrent extraction process analysis, “Adjacent Stage Impurity Ratio” (ASI...A significant development in the theory of countercurrent extraction will be presented in this article. New expressions of the term in countercurrent extraction process analysis, “Adjacent Stage Impurity Ratio” (ASIR), are deduced. Furthermore, based on the term together with mass balance and extraction equilibrium, the conditions where a given countercurrent extraction separation operation can have minimum amounts of both extracting solvent and scrubbing agent solution can be estimated, and the equations of the two minimum amounts can be deduced. It was found that the equations for a two-component separation using a single aqueous or organic feed are exactly the same as they appeared in the theory initially established in 1970s. Unlike its earlier version, the present derivation does not involve feed-stage-composition hypothesis, and also has the advantage of dealing with a double-feed system where both aqueous and organic feeds are simultaneously employed whereas the earlier theory can only analyze a separation using a single aqueous or organic feed.展开更多
Experiments were conducted to obtain the values of the Sauter bubble size, enrichment and recovery of bovine serum albumin (BSA) in a semi-batch col- umn fitted with a stainless steel sparger at elevated pressure. T...Experiments were conducted to obtain the values of the Sauter bubble size, enrichment and recovery of bovine serum albumin (BSA) in a semi-batch col- umn fitted with a stainless steel sparger at elevated pressure. The effects of Sur- face tension, surfactant concentration, foam/solution height ratio and air flow rate on the separation performance were investigated, and the results showed that good en- richments and recoveries can be achieved for bovine serum albumin operated at el- evated pressures. Especially the size of bubbles generated by the stainless steel sparger was smaller at higher pressures which is favorable to the foam separation process. Furthermore, the separation mechanism of bovine serum albumin operated at elevated pressure was also discussed.展开更多
Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial featur...Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial features among the consecutive speech frames become highly correlated such that it is helpful for speaker separation by providing additional spatial information.To fully exploit this information,we design a separation system on Recurrent Neural Network(RNN)with long short-term memory(LSTM)which effectively learns the temporal dynamics of spatial features.In detail,a LSTM-based speaker separation algorithm is proposed to extract the spatial features in each time-frequency(TF)unit and form the corresponding feature vector.Then,we treat speaker separation as a supervised learning problem,where a modified ideal ratio mask(IRM)is defined as the training function during LSTM learning.Simulations show that the proposed system achieves attractive separation performance in noisy and reverberant environments.Specifically,during the untrained acoustic test with limited priors,e.g.,unmatched signal to noise ratio(SNR)and reverberation,the proposed LSTM based algorithm can still outperforms the existing DNN based method in the measures of PESQ and STOI.It indicates our method is more robust in untrained conditions.展开更多
A new, simple and fast separation method for Fe using an extraction chromatographic resin, Aliquat 336 (commercially available as TEVA resin) has been developed. A one milliliter column containing 0.33 mL TEVA resin o...A new, simple and fast separation method for Fe using an extraction chromatographic resin, Aliquat 336 (commercially available as TEVA resin) has been developed. A one milliliter column containing 0.33 mL TEVA resin on 0.67 mL CG-71C was used.Iron was adsorbed with 6mol·L-1 HCl + H2O2 on TEVA resin, and recovered with 2 mol·L-1HNO3. The recovery yield and total blank were 93.5 ± 6.5% and 6 ng, respectively. Theseparation method is simple, and takes < 2 hours. For evaluation of the Fe separation, Fe isotope ratios were measured by a double-spike method employing multicollector inductively coupled plasma source mass spectrometry (MC-ICP-MS) with repeatability of 0.06‰ (SD) for the standard solution and ~0.05‰ for the silicate samples. Therefore, the column chemistry developed in this study is a viable option for Fe isotope ratio measurement by MC-ICP-MS.展开更多
A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) al...A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) algorithm after the introduction of the principle and algorithm of ICA. The main formulas in the novel algorithm are elaborated and the idiographic steps of the algorithm are given. Then the computer simulation is used to test the performance of this algorithm. Both the traditional FastlCA algorithm and the novel ICA algorithm are applied to separate mixed signal data. Experiment results show the novel method has a better performance in separating signals than the traditional FastlCA algorithm based on negentropy. The novel algorithm could estimate the source signals from the mixed signals more precisely.展开更多
In the design of hearing aids(HA),the real-time speech-enhancement is done.The digital hearing aids should provide high signal-to-noise ratio,gain improvement and should eliminate feedback.In generic hearing aids the ...In the design of hearing aids(HA),the real-time speech-enhancement is done.The digital hearing aids should provide high signal-to-noise ratio,gain improvement and should eliminate feedback.In generic hearing aids the perfor-mance towards different frequencies varies and non uniform.Existing noise can-cellation and speech separation methods drops the voice magnitude under the noise environment.The performance of the HA for frequency response is non uni-form.Existing noise suppression methods reduce the required signal strength also.So,the performance of uniform sub band analysis is poor when hearing aid is con-cern.In this paper,a speech separation method using Non-negative Matrix Fac-torization(NMF)algorithm is proposed for wavelet decomposition.The Proposed non-uniformfilter-bank was validated by parameters like band power,Signal-to-noise ratio(SNR),Mean Square Error(MSE),Signal to Noise and Dis-tortion Ratio(SINAD),Spurious-free dynamic range(SFDR),error and time.The speech recordings before and after separation was evaluated for quality using objective speech quality measures International Telecommunication Union-Telecommunication standard ITU-T P.862.展开更多
The recovery of heavy oil by water flooding is 10% lower than that of conventional crude oil, so enhanced oil recovery (EOR) is of great significance for heavy oil. In this paper, foam flooding with a gas-liquid rat...The recovery of heavy oil by water flooding is 10% lower than that of conventional crude oil, so enhanced oil recovery (EOR) is of great significance for heavy oil. In this paper, foam flooding with a gas-liquid ratio (GLR) of 0.2:1 for the Zhuangxi heavy oil (325 mPa.s at 55 ℃) was performed on cores, sand packs and plate model. In sand pack tests, polymer enhanced foam flooding increased oil recovery by 39.8%, which was 11.4% higher than that for alkali/surfactant/polymer (ASP) flooding under the same conditions. Polymer enhanced foam flooding in plate models shows that the low GLR foam flooding increased oil recovery by about 30%, even when the extended water flooding was finished at 90% water cut. Moreover, it was discovered by microscopy that foam was more stable in heavy oil than in light oil. These results confirm that low GLR foam flooding is a promising technology for displacing conventional heavy oil.展开更多
The study proposes, along the line of [1], six separate-type estimators for estimating the population ratio of two variables in post-stratified sampling, using variable transformation. Properties of the proposed estim...The study proposes, along the line of [1], six separate-type estimators for estimating the population ratio of two variables in post-stratified sampling, using variable transformation. Properties of the proposed estimators were obtained up to first order approximations, both for achieved sample configurations (conditional argument) and over repeated samples of fixed size n (unconditional argument). Efficiency conditions, under which the proposed separate-type estimators would perform better than the associated customary separate-type estimators in terms of having smaller mean squared errors, were obtained. Furthermore, conditions under which some of the proposed separate-type estimators would perform better than other proposed separate-type estimators were also obtained. The optimum estimators among the proposed separate-type estimators were obtained and an empirical illustration confirmed the theoretical results.展开更多
The lifting efficiency and stability of gas lift well are affected by the socalled slippage-loss effect in gas-liquid two-phase flow.The existing studies on this subject have generally been based on vertical and horiz...The lifting efficiency and stability of gas lift well are affected by the socalled slippage-loss effect in gas-liquid two-phase flow.The existing studies on this subject have generally been based on vertical and horizontal wells.Only a few of them have considered inclined pipes.In the present work a new focused study is presented along these lines.More specifically,we use the non-slip pressure drop model with Flanigan’s fluctuation correction coefficient formula(together with the parameters of slippage density,slippage pressure drop and slippage ratio)to analyze the influence of the inclination angle on slippage loss for different conditions(different gas-liquid superficial velocity and pipe diameters).Moreover,the“standard regression coefficient method”is used for multi-factor sensitivity analysis.The experimental results indicate that slippage loss is affected by multiple factors,and the influence of the inclination angle on slippage loss is less significant than other factors.The change of the slippage pressure drop with the superficial velocity of gas-liquid is similar to that of the total pressure drop.The inclination angles of 45°and 60°have the greatest influence on slippage loss.The correlation between slippage density and slippage ratio is not obvious.Using the so-called slippage ratio seems to be a more accurate option to evaluate the degree of slippage loss.展开更多
Fine Al(OH)3 crystals were aggregated from supersaturated aluminate solution in the batch reaction tanks. By means of laser particle size analyzer and scanning electron microscopy, the influences of temperature and ...Fine Al(OH)3 crystals were aggregated from supersaturated aluminate solution in the batch reaction tanks. By means of laser particle size analyzer and scanning electron microscopy, the influences of temperature and initial molar ratio of Na2O to Al2O3 (aK) on agglomeration of fine seed in Bayer process were investigated. The results show that agglomeration is almost finished in 8 h, and seeds with size less than 2 μm are easily aggregated together, and almost disappear in 8 h under the optimal process conditions. In the aluminate solution with the same moderate initial aK, when the reaction temperature reaches 75 ℃, the secondary nucleation does not occur, and the effect of agglomeration is better. And at the same reaction temperature, when the initial aK is 1.62, the initial supersaturation of aluminate solution is moderate, the binders on the surfaces of the seed are enough to maintain the agglomeration process, and the agglomeration degree is better. From SEM images, agglomeration mainly occurs in the fine particles, the combinations among the fine particles are loose and the new formed coarse crystal shapes are irregular.展开更多
The Euler-Euler numerical method was used to investigate the effects of contraction ratio on twophase flow mixing with mass transfer in the flow injection nozzle. The geometric shape of the nozzle was modified to impr...The Euler-Euler numerical method was used to investigate the effects of contraction ratio on twophase flow mixing with mass transfer in the flow injection nozzle. The geometric shape of the nozzle was modified to improve carbonation efficiency. A gas inlet hole was created to increase the flow mixing of CO2 with water. A nozzle throat was also introduced to increase the gas dissolution by increasing flow rates. Various contraction ratios of nozzle throat, inlet gas and liquid velocities, and gas bubble sizes were employed to determine their effects on gas hold-up, gas concentration, and mass transfer coefficient. Results revealed that the flow injection nozzle with high contraction ratios improved carbonation because of high gas hold-up. Gas concentration was directly related to contraction ratio and gas flow velocities. Carbonation reduced when high liquid velocities and large gas bubbles were employed because of inefficient flow mixing. This study indicated that flow injection nozzle with large contraction ratios were suitable for carbonation because of their ability to increase gas hold-up, gas concentration, and mass transfer coefficient.展开更多
A separated flow model with stochastical trajectories has been developed to describe the fluid flow in a bubble stirred ladle.The bubble dispersion,turbulent characteristics and gas-liquid interactions can be predicte...A separated flow model with stochastical trajectories has been developed to describe the fluid flow in a bubble stirred ladle.The bubble dispersion,turbulent characteristics and gas-liquid interactions can be predicted by this mathematical model.The bubble flow as a dispersed phase is treated in a Lagrangian frame of reference and the analysis of the turbulent flow for liquid phase is conducted in a Eulerian field.The interactions between bubbles and liquid phases are considered as a bubble source term in the control equation for a continuous phase. The Monte Carlo sampling method is used to determine the bubble trajectories.The homoge- neous flow model is also taken into consideration so that it can be compared with the sepa- rated flow model.Numerical predictions using a water model of a ladle show that the pre- dicted results of the separated flow model agree satisfactorily with the experimental results, but the prediction of the homogeneous flow model are not in good agreement with the experi- mental results.展开更多
文摘Fibrous filters are often used to remove contaminants including both dusts and liquid droplets from natural gas. This paper aims to evaluate the gas-liquid separation performance of three types of cartridge filters used in the West-East natural gas transmission project. The comparison of the original pressure drop of clean filters and the evolution of pressure drop as liquid droplets deposited in the filter media are described. The original pressure drops of these filters were similar but the pressure drops at a steady state were different. Fractional efficiency was used to study the separation performance of cartridge filters. Droplets at the outlet of the filters had small diameters, no more than 3 μm, but were very numerous. The effect of filtration velocity on gas-liquid separation performance was analyzed. Higher filtration velocity indicated better gas-liquid separation performance. Finally the quality factor related to pressure drop and filtration efficiency was applied to evaluate the gas-liquid separation performance.
基金the National Natural Science Foundation of China(52304236)the Natural Science Foundation of Shandong Province(ZR2021QE076)for the financial support to this research extracted from the project.
文摘Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement efficiency,owing to the single gas sensor without the identification ability of multiple gases.In this work,a novel gas-liquid Raman detection method of monitoring the multi-component dissolved gases was proposed based on a continuous gas-liquid separator under a large difference of partial pressure.The limit of detection(LOD)of the gas Raman spectrometer could arrive at about 14 μl·L^(-1)for N_(2)gas.Moreover,based on the continuous gas-liquid separation process,the detection time of the dissolved gases could be largely decreased to about 200 s compared with that of the traditional detection method(30 min).Effect of equilibrium time on gas-liquid separation process indicated that the extracted efficiency and decay time of these dissolved gases was CO_(2)>O_(2)>N_(2).In addition,the analysis of the relationship between equilibrium time and flow speed indicated that the decay time decreased with the increase of the flow speed.The validation and application of the developed system presented its great potential for studying the components and spatiotemporal distribution of dissolved gases in seawater.
文摘A significant development in the theory of countercurrent extraction will be presented in this article. New expressions of the term in countercurrent extraction process analysis, “Adjacent Stage Impurity Ratio” (ASIR), are deduced. Furthermore, based on the term together with mass balance and extraction equilibrium, the conditions where a given countercurrent extraction separation operation can have minimum amounts of both extracting solvent and scrubbing agent solution can be estimated, and the equations of the two minimum amounts can be deduced. It was found that the equations for a two-component separation using a single aqueous or organic feed are exactly the same as they appeared in the theory initially established in 1970s. Unlike its earlier version, the present derivation does not involve feed-stage-composition hypothesis, and also has the advantage of dealing with a double-feed system where both aqueous and organic feeds are simultaneously employed whereas the earlier theory can only analyze a separation using a single aqueous or organic feed.
文摘Experiments were conducted to obtain the values of the Sauter bubble size, enrichment and recovery of bovine serum albumin (BSA) in a semi-batch col- umn fitted with a stainless steel sparger at elevated pressure. The effects of Sur- face tension, surfactant concentration, foam/solution height ratio and air flow rate on the separation performance were investigated, and the results showed that good en- richments and recoveries can be achieved for bovine serum albumin operated at el- evated pressures. Especially the size of bubbles generated by the stainless steel sparger was smaller at higher pressures which is favorable to the foam separation process. Furthermore, the separation mechanism of bovine serum albumin operated at elevated pressure was also discussed.
基金This work is supported by the National Nature Science Foundation of China(NSFC)under Grant Nos.61571106,61501169,41706103the Fundamental Research Funds for the Central Universities under Grant No.2242013K30010.
文摘Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial features among the consecutive speech frames become highly correlated such that it is helpful for speaker separation by providing additional spatial information.To fully exploit this information,we design a separation system on Recurrent Neural Network(RNN)with long short-term memory(LSTM)which effectively learns the temporal dynamics of spatial features.In detail,a LSTM-based speaker separation algorithm is proposed to extract the spatial features in each time-frequency(TF)unit and form the corresponding feature vector.Then,we treat speaker separation as a supervised learning problem,where a modified ideal ratio mask(IRM)is defined as the training function during LSTM learning.Simulations show that the proposed system achieves attractive separation performance in noisy and reverberant environments.Specifically,during the untrained acoustic test with limited priors,e.g.,unmatched signal to noise ratio(SNR)and reverberation,the proposed LSTM based algorithm can still outperforms the existing DNN based method in the measures of PESQ and STOI.It indicates our method is more robust in untrained conditions.
文摘A new, simple and fast separation method for Fe using an extraction chromatographic resin, Aliquat 336 (commercially available as TEVA resin) has been developed. A one milliliter column containing 0.33 mL TEVA resin on 0.67 mL CG-71C was used.Iron was adsorbed with 6mol·L-1 HCl + H2O2 on TEVA resin, and recovered with 2 mol·L-1HNO3. The recovery yield and total blank were 93.5 ± 6.5% and 6 ng, respectively. Theseparation method is simple, and takes < 2 hours. For evaluation of the Fe separation, Fe isotope ratios were measured by a double-spike method employing multicollector inductively coupled plasma source mass spectrometry (MC-ICP-MS) with repeatability of 0.06‰ (SD) for the standard solution and ~0.05‰ for the silicate samples. Therefore, the column chemistry developed in this study is a viable option for Fe isotope ratio measurement by MC-ICP-MS.
文摘A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) algorithm after the introduction of the principle and algorithm of ICA. The main formulas in the novel algorithm are elaborated and the idiographic steps of the algorithm are given. Then the computer simulation is used to test the performance of this algorithm. Both the traditional FastlCA algorithm and the novel ICA algorithm are applied to separate mixed signal data. Experiment results show the novel method has a better performance in separating signals than the traditional FastlCA algorithm based on negentropy. The novel algorithm could estimate the source signals from the mixed signals more precisely.
文摘In the design of hearing aids(HA),the real-time speech-enhancement is done.The digital hearing aids should provide high signal-to-noise ratio,gain improvement and should eliminate feedback.In generic hearing aids the perfor-mance towards different frequencies varies and non uniform.Existing noise can-cellation and speech separation methods drops the voice magnitude under the noise environment.The performance of the HA for frequency response is non uni-form.Existing noise suppression methods reduce the required signal strength also.So,the performance of uniform sub band analysis is poor when hearing aid is con-cern.In this paper,a speech separation method using Non-negative Matrix Fac-torization(NMF)algorithm is proposed for wavelet decomposition.The Proposed non-uniformfilter-bank was validated by parameters like band power,Signal-to-noise ratio(SNR),Mean Square Error(MSE),Signal to Noise and Dis-tortion Ratio(SINAD),Spurious-free dynamic range(SFDR),error and time.The speech recordings before and after separation was evaluated for quality using objective speech quality measures International Telecommunication Union-Telecommunication standard ITU-T P.862.
基金support from the Innovation Team Program and New Century Excellent Talents Awards Program,the Ministry of Education of ChinaFok Ying Tung Education Foundation
文摘The recovery of heavy oil by water flooding is 10% lower than that of conventional crude oil, so enhanced oil recovery (EOR) is of great significance for heavy oil. In this paper, foam flooding with a gas-liquid ratio (GLR) of 0.2:1 for the Zhuangxi heavy oil (325 mPa.s at 55 ℃) was performed on cores, sand packs and plate model. In sand pack tests, polymer enhanced foam flooding increased oil recovery by 39.8%, which was 11.4% higher than that for alkali/surfactant/polymer (ASP) flooding under the same conditions. Polymer enhanced foam flooding in plate models shows that the low GLR foam flooding increased oil recovery by about 30%, even when the extended water flooding was finished at 90% water cut. Moreover, it was discovered by microscopy that foam was more stable in heavy oil than in light oil. These results confirm that low GLR foam flooding is a promising technology for displacing conventional heavy oil.
文摘The study proposes, along the line of [1], six separate-type estimators for estimating the population ratio of two variables in post-stratified sampling, using variable transformation. Properties of the proposed estimators were obtained up to first order approximations, both for achieved sample configurations (conditional argument) and over repeated samples of fixed size n (unconditional argument). Efficiency conditions, under which the proposed separate-type estimators would perform better than the associated customary separate-type estimators in terms of having smaller mean squared errors, were obtained. Furthermore, conditions under which some of the proposed separate-type estimators would perform better than other proposed separate-type estimators were also obtained. The optimum estimators among the proposed separate-type estimators were obtained and an empirical illustration confirmed the theoretical results.
基金supported by National Natural Science Foundation of China(No.61572084)the National Key Research and Development Program of China(2017ZX05030-005,2019D-4413).
文摘The lifting efficiency and stability of gas lift well are affected by the socalled slippage-loss effect in gas-liquid two-phase flow.The existing studies on this subject have generally been based on vertical and horizontal wells.Only a few of them have considered inclined pipes.In the present work a new focused study is presented along these lines.More specifically,we use the non-slip pressure drop model with Flanigan’s fluctuation correction coefficient formula(together with the parameters of slippage density,slippage pressure drop and slippage ratio)to analyze the influence of the inclination angle on slippage loss for different conditions(different gas-liquid superficial velocity and pipe diameters).Moreover,the“standard regression coefficient method”is used for multi-factor sensitivity analysis.The experimental results indicate that slippage loss is affected by multiple factors,and the influence of the inclination angle on slippage loss is less significant than other factors.The change of the slippage pressure drop with the superficial velocity of gas-liquid is similar to that of the total pressure drop.The inclination angles of 45°and 60°have the greatest influence on slippage loss.The correlation between slippage density and slippage ratio is not obvious.Using the so-called slippage ratio seems to be a more accurate option to evaluate the degree of slippage loss.
基金Project(2005CB623702)supported by the Major State Basic Research and Development Program of ChinaProject(20476107) supported by the National Natural Science Foundation of China
文摘Fine Al(OH)3 crystals were aggregated from supersaturated aluminate solution in the batch reaction tanks. By means of laser particle size analyzer and scanning electron microscopy, the influences of temperature and initial molar ratio of Na2O to Al2O3 (aK) on agglomeration of fine seed in Bayer process were investigated. The results show that agglomeration is almost finished in 8 h, and seeds with size less than 2 μm are easily aggregated together, and almost disappear in 8 h under the optimal process conditions. In the aluminate solution with the same moderate initial aK, when the reaction temperature reaches 75 ℃, the secondary nucleation does not occur, and the effect of agglomeration is better. And at the same reaction temperature, when the initial aK is 1.62, the initial supersaturation of aluminate solution is moderate, the binders on the surfaces of the seed are enough to maintain the agglomeration process, and the agglomeration degree is better. From SEM images, agglomeration mainly occurs in the fine particles, the combinations among the fine particles are loose and the new formed coarse crystal shapes are irregular.
文摘The Euler-Euler numerical method was used to investigate the effects of contraction ratio on twophase flow mixing with mass transfer in the flow injection nozzle. The geometric shape of the nozzle was modified to improve carbonation efficiency. A gas inlet hole was created to increase the flow mixing of CO2 with water. A nozzle throat was also introduced to increase the gas dissolution by increasing flow rates. Various contraction ratios of nozzle throat, inlet gas and liquid velocities, and gas bubble sizes were employed to determine their effects on gas hold-up, gas concentration, and mass transfer coefficient. Results revealed that the flow injection nozzle with high contraction ratios improved carbonation because of high gas hold-up. Gas concentration was directly related to contraction ratio and gas flow velocities. Carbonation reduced when high liquid velocities and large gas bubbles were employed because of inefficient flow mixing. This study indicated that flow injection nozzle with large contraction ratios were suitable for carbonation because of their ability to increase gas hold-up, gas concentration, and mass transfer coefficient.
文摘A separated flow model with stochastical trajectories has been developed to describe the fluid flow in a bubble stirred ladle.The bubble dispersion,turbulent characteristics and gas-liquid interactions can be predicted by this mathematical model.The bubble flow as a dispersed phase is treated in a Lagrangian frame of reference and the analysis of the turbulent flow for liquid phase is conducted in a Eulerian field.The interactions between bubbles and liquid phases are considered as a bubble source term in the control equation for a continuous phase. The Monte Carlo sampling method is used to determine the bubble trajectories.The homoge- neous flow model is also taken into consideration so that it can be compared with the sepa- rated flow model.Numerical predictions using a water model of a ladle show that the pre- dicted results of the separated flow model agree satisfactorily with the experimental results, but the prediction of the homogeneous flow model are not in good agreement with the experi- mental results.