期刊文献+
共找到11,874篇文章
< 1 2 250 >
每页显示 20 50 100
Computational fluid dynamics simulation of gas-liquid two phases flow in 320 m^3 air-blowing mechanical flotation cell using different turbulence models 被引量:3
1
作者 沈政昌 陈建华 +2 位作者 张谌虎 廖幸锦 李玉琼 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2385-2392,共8页
According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in... According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in flotation cell was simulated using computational fluid dynamics method. It is shown that hexahedral mesh scheme is more suitable for the complex structure of the flotation cell than tetrahedral mesh scheme, and a mesh quality ranging from 0.7 to 1.0 is obtained. Comparative studies of the standard k-ε, k-ω and realizable k-ε turbulence models were carried out. It is indicated that the standard k-ε turbulence model could give a result relatively close to the practice and the liquid phase flow field is well characterized. In addition, two obvious recirculation zones are formed in the mixing zones, and the pressure on the rotor and stator is well characterized. Furthermore, the simulation results using improved standard k-ε turbulence model show that surface tension coefficient of 0.072, drag model of Grace and coefficient of 4, and lift coefficient of 0.001 can be achieved. The research results suggest that gas-fluid two-phase flow in large flotation cell can be well simulated using computational fluid dynamics method. 展开更多
关键词 computational fluid dynamics (CFD) simulation flotation cell gas-liquid two-phases flow
下载PDF
Evaluation of frictional pressure drop correlations for air-water and air-oil two-phase flow in pipeline-riser system
2
作者 Nai-Liang Li Bin Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1305-1319,共15页
Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ... Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop. 展开更多
关键词 Frictional pressure drop Pipeline-riser gas-liquid two-phase flow Severe slugging CORRELATION
下载PDF
A Novel Method for Determining the Void Fraction in Gas-Liquid Multi-Phase Systems Using a Dynamic Conductivity Probe
3
作者 Xiaochu Luo Xiaobing Qi +3 位作者 Zhao Luo Zhonghao Li Ruiquan Liao Xingkai Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1233-1249,共17页
Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel... Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel approach for determining the void fraction based on a reciprocating dynamic conductivity probe used to measure the liquid film thickness under forced annular-flow conditions.The measurement system comprises a cyclone,a conductivity probe,a probe reciprocating device,and a data acquisition and processing system.This method ensures that the flow pattern is adjusted to a forced annular flow,thereby minimizing the influence of complex and variable gas-liquid flow patterns on the measurement results;Moreover,it determines the liquid film thickness solely according to circuit connectivity rather than specific conductivity values,thereby mitigating the impact of salinity.The reliability of the measurement system is demonstrated through laboratory experiments.The experimental results indicate that,in a range of gas phase superficial velocities 5–20 m/s and liquid phase superficial velocities 0.079–0.48 m/s,the maximum measurement deviation for the void fraction is 4.23%. 展开更多
关键词 Forced annular flow dynamic conductivity probe void fraction gas-liquid flow liquid film thickness
下载PDF
A transient production prediction method for tight condensate gas wells with multiphase flow
4
作者 BAI Wenpeng CHENG Shiqing +3 位作者 WANG Yang CAI Dingning GUO Xinyang GUO Qiao 《Petroleum Exploration and Development》 SCIE 2024年第1期172-179,共8页
Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and press... Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves. 展开更多
关键词 tight reservoir condensate gas multiphase flow phase behavior transient flow PSEUDO-PRESSURE production prediction
下载PDF
A New Device for Gas-Liquid Flow Measurements Relying on Forced Annular Flow
5
作者 Tiantian Yu Youping Lv +5 位作者 Hao Zhong Ming Liu Pingyuan Gai Zeju Jiang Peng Zhang Xingkai Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1759-1772,共14页
A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The sw... A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow. 展开更多
关键词 gas-liquid flow measurement blocking flowmeter measurement model pressure fluctuations numerical simulation experimental control
下载PDF
An Improved Coupled Level Set and Continuous Moment-of-Fluid Method for Simulating Multiphase Flows with Phase Change
6
作者 Zhouteng Ye Cody Estebe +8 位作者 Yang Liu Mehdi Vahab Zeyu Huang Mark Sussman Alireza Moradikazerouni Kourosh Shoele Yongsheng Lian Mitsuhiro Ohta M.Yousuff Hussaini 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1034-1069,共36页
An improved algorithm for computing multiphase flows is presented in which the multimaterial Moment-of-Fluid(MOF)algorithm for multiphase flows,initially described by Li et al.(2015),is enhanced addressing existing MO... An improved algorithm for computing multiphase flows is presented in which the multimaterial Moment-of-Fluid(MOF)algorithm for multiphase flows,initially described by Li et al.(2015),is enhanced addressing existing MOF difficulties in computing solutions to problems in which surface tension forces are crucial for understanding salient flow mechanisms.The Continuous MOF(CMOF)method is motivated in this article.The CMOF reconstruction method inherently removes the"checkerboard instability"that persists when using the MOF method on surface tension driven multiphase(multimaterial)flows.The CMOF reconstruction algorithm is accelerated by coupling the CMOF method to the level set method and coupling the CMOF method to a decision tree machine learning(ML)algorithm.Multiphase flow examples are shown in the two-dimensional(2D),three-dimensional(3D)axisymmetric"RZ",and 3D coordinate systems.Examples include two material and three material multiphase flows:bubble formation,the impingement of a liquid jet on a gas bubble in a cryogenic fuel tank,freezing,and liquid lens dynamics. 展开更多
关键词 Moment-of-Fluid(MOF) Surface tension Two phase flow phase change Deforming boundaries with change(s)in topology Two-dimensional(2D) Three-dimensional(3D)axisymmetric 3D
下载PDF
Phase-Based Optical Flow Method with Optimized Parameter Settings for Enhancing Displacement Measurement Adaptability
7
作者 Zhaoxin Peng Menglian Liu +2 位作者 Zhiliang Wang Wei Liu Xian Wang 《Open Journal of Applied Sciences》 2024年第5期1165-1184,共20页
To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizi... To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizing parameter settings is proposed. The optimized parameters include the best measurement points of the Region of Interest (ROI) and the levels of pyramid filters. Additionally, to address the issue of updating reference frames in practical applications due to the difficulty in estimating the maximum effective measurement value, a mechanism for dynamically updating reference frames is introduced. Experimental results demonstrate that compared to representative image gradient-based displacement measurement methods, the proposed method exhibits higher measurement accuracy in engineering applications. This provides reliable data support for structural damage identification research based on vibration signals and is expected to broaden the engineering application prospects for structural health monitoring. 展开更多
关键词 Displacement Measurement phase-Based Optical flow Optimized Parameter Setting
下载PDF
Numerical Solutions of the Classical and Modified Buckley-Leverett Equations Applied to Two-Phase Fluid Flow
8
作者 Raphael de O. Garcia Graciele P. Silveira 《Open Journal of Fluid Dynamics》 2024年第3期184-204,共21页
Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on t... Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement. 展开更多
关键词 Computational Fluid Dynamics Buckley-Leverett Equation Numerical Methods Two-phase Fluid flow
下载PDF
Effects of channel wall wettability on gas-liquid dynamics mass transfer under Taylor flow in a serpentine microchannel 被引量:1
9
作者 Xuancheng Liu Hongye Li +4 位作者 Yibing Song Nan Jin Qingqiang Wang Xunli Zhang Yuchao Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期192-201,共10页
The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafti... The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafting polymerization under controlled experimental conditions.The dynamic changes of CO_(2)bubbles flowing along the microchannel were captured by a high-speed video camera mounted on a stereo microscope,whilst a unit cell model was employed to theoretically investigate the gas-liquid mass transfer dynamics.We quantitatively characterized the effects of wall wettability,specifically the contact angle,on the formation mechanism of gas bubbles and mass transfer process experimentally.The results revealed that the gas bubble velocity,the overall volumetric liquid phase mass transfer coefficients(kLa),and the specific interfacial area(a)all increased with the increase of the contact angle.Conversely,gas bubble length and leakage flow decreased.Furthermore,we proposed a new modified model to predict the gas-liquid two-phase mass transfer performance,based on van Baten’s and Yao’s models.Our proposed model was observed to agree reasonably well with experimental observations. 展开更多
关键词 MICROREACTOR Microchannels Mass transfer WETTABILITY Taylor flow gas-liquid two-phase
下载PDF
Design and Experimental Analyses of Small-flow High-head Centrifugal-vortex Pump for Gas-Liquid Two-phase Mixture 被引量:27
10
作者 朱祖超 谢鹏 +2 位作者 偶国富 崔宝玲 李昳 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第4期528-534,共7页
The design method of small-flow high-head centrifugal-vortex pump was presented. This pump, configured with inducer, complex-centrifugal impeller and open-vortex impeller, was put forward to deliver gas-liquid two-pha... The design method of small-flow high-head centrifugal-vortex pump was presented. This pump, configured with inducer, complex-centrifugal impeller and open-vortex impeller, was put forward to deliver gas-liquid two-phase mixture. An HTB-5/60 type sample pump was developed and tested on a closed-loop test rig. Experimental studies on performance and cavitation tests for gas-liquid two-phase mixture were carried out compared with pure-water experimental results. Also the effect of gas phase on pump was analyzed and discussed. The experimental results show that performance and cavitation characteristics of the sample purnp deteriorates progressively with increasing volume fraction of gas. When the total capacity Qm is between 4.5 m^3·h^-1 and 6 m^3·h^-1 and the gas flow rate qg below 0.66 m^3·h^-1, or qg/Qm is lower than 15%, the characteristic curves are approximately parallel to those in pure water test, but the performance deteriorates sharply until an abrupt flow-cutting at a critical volume fraction of gas. This pump is found suitable for transporting gas-liquid two-phase mixture when working around rated capacity of 5 m^3·h^-1 with qglQm below 15%. 展开更多
关键词 centrifugal-vortex pump gas-liquid two-phase flow performance and cavitation test
下载PDF
Flow Regime Identification of Gas-liquid Two-phase Flow Based on HHT 被引量:11
11
作者 孙斌 张宏建 +1 位作者 程路 赵玉晓 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第1期24-30,共7页
A new method to identify flow regime in two-phase flow was presented, based on signal processing of differential pressure using Hilbert Huang transform (HHT). Signals obtained from a Venturi meter were decomposed in... A new method to identify flow regime in two-phase flow was presented, based on signal processing of differential pressure using Hilbert Huang transform (HHT). Signals obtained from a Venturi meter were decomposed into different intrinsic mode functions (IMFs) with HHT, then the energy fraction of each intrinsic mode and the mean value of residual function were calculated, from which the rules of flow regime identification were summarized. Experiments were carried out on two-phase flow in the horizontal tubes with 50mm and 40mm inner diameter, while water flowrate was in the range of 1.3m^3.h^-1 to 10.5m^3.h^-1, oil flowrate was from 4.2m^3.h^-1 to 7.0m^3.h^-1 and gas flowrate from 0 to 15m^3.h^-1. The results show that the proposed rules have high precision for single phase, bubbly, and slug, plug flow regirne identification, which are independent of not only properties of two-phase fluid. In addition, the method can meet the need of industrial application because of its simple calculation. 展开更多
关键词 flow regime Hilbert-Huang transform differential pressure signal intrinsic mode function gas-liquid two-phase flow
下载PDF
NUMERICAL SIMULATION OF CHARGED GAS-LIQUID TWO PHASE JET FLOW IN ELECTROSTATIC SPRAYING 被引量:6
12
作者 Wang Ze,Jin Hanhui,Wang Junfeng,Luo Tiqian (School of Energy and Power,Jiangsu University of Science and Technology) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2001年第3期266-270,共5页
Multi-fluid k-e-kp, two phase turbulence model is used to simulate charged gas-liquid two phase coaxial jet, which is the transorting flow field in electrostatic spraying. Compared with the results of experiment, cha... Multi-fluid k-e-kp, two phase turbulence model is used to simulate charged gas-liquid two phase coaxial jet, which is the transorting flow field in electrostatic spraying. Compared with the results of experiment, charged gas-liquid two-phase turbulence can be well predicted by this model. 展开更多
关键词 ELECTROSTATICS Two phase flow TURBULENCE Numerical simulation
下载PDF
Identification Method of Gas-Liquid Two-phase Flow Regime Based on Image Multi-feature Fusion and Support Vector Machine 被引量:6
13
作者 周云龙 陈飞 孙斌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第6期832-840,共9页
The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to ide... The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification. 展开更多
关键词 flow regime identification gas-liquid two-phase flow image processing multi-feature fusion support vector machine
下载PDF
Local Flow Regime Transition Criteria of Gas-Liquid Two-phase Flow in Vertical Upward Tube with a Horizontal Rod 被引量:4
14
作者 胡志华 杨燕华 +1 位作者 刘磊 周芳德 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第4期442-449,共8页
The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vert... The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vertical tube with a horizontal rod have been investigated with an optical probe and the digital high speed video system. The local flow patterns are defined as the bubble, slug, churn and annular flow patterns. Optical probe signals are ana- lyzed in terms of probability density function, and it is proved that the local flow patterns can be recognized by this method. The transition mechanisms between the different flow patterns have been analyzed and the corresponding transitional models are proposed. Finally, local flow pattern maps of the upward gas-water two-phase flow in the vertical tube with a horizontal rod are constructed. 展开更多
关键词 gas-liquid two-phase cross flow local flow pattern transition
下载PDF
Experimental Research on Gas-Liquid Two-Phase Spiral Flow in Horizontal Pipe 被引量:8
15
作者 Wang Shuli Rao Yongchao +1 位作者 Wu Yuxian Wang Xiaobing 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2012年第3期24-32,共9页
In view of the importance of gas-liquid two-phase spiral flow and the few research reports at home and abroad,the gas-liquid two-phase spiral flow patterns have been researched in a horizontal pipe with different para... In view of the importance of gas-liquid two-phase spiral flow and the few research reports at home and abroad,the gas-liquid two-phase spiral flow patterns have been researched in a horizontal pipe with different parameters investigated by means of observation and a high-speed camera.Since the appearance of spiral flow makes the distribution of twophase flow more complicated,the flow patterns appearing in the experiments were divided into the Spiral Wavy Stratified Flow(SWS),the Spiral Bubble Flow(SB),the Spiral Slug Flow(SS),the Spiral Linear Flow(SL),the Spiral Axial Flow(SA),and the Spiral Dispersed Flow(SD) by the observations and with reference to the predecessors' research achievements.A flow pattern map has been drawn up.The influence of velocity,vane angle and vane area on flow pattern conversion boundary and pressure drop has been studied,with a solid foundation laid for the future research work. 展开更多
关键词 gas-liquid two-phase spiral flow VANE flow pattern flow pattern map experimental research
下载PDF
Numerical Simulation and Experimental Analysis of the Influence of Asymmetric Pressure Conditions on the Splitting of a Gas-Liquid Two-Phase Flow at a T-Junction 被引量:4
16
作者 Lihui Ma Limin He +1 位作者 Xiaoming Luo Xiangran Mi 《Fluid Dynamics & Materials Processing》 EI 2021年第5期959-970,共12页
Dedicated experiments and numerical simulations have been conducted to investigate the splitting characteristics of a gas-liquid two phase flow at a T junction.The experiments were carried out for different gas-liquid... Dedicated experiments and numerical simulations have been conducted to investigate the splitting characteristics of a gas-liquid two phase flow at a T junction.The experiments were carried out for different gas-liquid velocities.The flow rates in the two branches were measured accurately to determine how the two considered phases distribute in the two outlets.The experimental results have shown that when the two outlet pressures are asymmetric,the two-phase flow always tends to flow into the outlet which has a lower pressure.As the inlet liquid velocity increases,however,the two-phase flow gradually tends to split evenly.Compared with the experiment results,the pressure difference between the two outlets can be determined more accurately by means of numerical simulation.The trends of experimental results and simulations are in very good agreement. 展开更多
关键词 Two-phase flow PRESSURE flow loop gas-liquid split characteristics simulation
下载PDF
A novel complex network-based deep learning method for characterizing gas-liquid two-phase flow 被引量:4
17
作者 Zhong-Ke Gao Ming-Xu Liu +1 位作者 Wei-Dong Dang Qing Cai 《Petroleum Science》 SCIE CAS CSCD 2021年第1期259-268,共10页
Gas-liquid two-phase flow widely exits in production and transportation of petroleum industry.Characterizing gas-liquid flow and measuring flow parameters represent challenges of great importance,which contribute to t... Gas-liquid two-phase flow widely exits in production and transportation of petroleum industry.Characterizing gas-liquid flow and measuring flow parameters represent challenges of great importance,which contribute to the recognition of flow regime and the optimal design of industrial equipment.In this paper,we propose a novel complex network-based deep learning method for characterizing gas-liquid flow.Firstly,we map the multichannel measurements to multiple limited penetrable visibility graphs(LPVGs)and obtain their degree sequences as the graph representation.Based on the degree distribution,we analyze the complicated flow behavior under different flow structures.Then,we design a dual-input convolutional neural network to fuse the raw signals and the graph representation of LPVGs for the classification of flow structures and measurement of gas void fraction.We implement the model with two parallel branches with the same structure,each corresponding to one input.Each branch consists of a channel-projection convolutional part,a spatial-temporal convolutional part,a dense block and an attention module.The outputs of the two branches are concatenated and fed into several full connected layers for the classification and measurement.At last,our method achieves an accuracy of 95.3%for the classification of flow structures,and a mean squared error of 0.0038 and a mean absolute percent error of 6.3%for the measurement of gas void fraction.Our method provides a promising solution for characterizing gas-liquid flow and measuring flow parameters. 展开更多
关键词 gas-liquid flow Gas void fraction flow structure Limited penetrable visibility graph Deep learning
下载PDF
Effect of the Inclination Angle on Slippage Loss in Gas-Liquid Two-Phase Flow 被引量:4
18
作者 Yushan Liu Yubin Su +2 位作者 Zhenhua Wu Wei Luo Ruiquan Liao 《Fluid Dynamics & Materials Processing》 EI 2020年第3期475-488,共14页
The lifting efficiency and stability of gas lift well are affected by the socalled slippage-loss effect in gas-liquid two-phase flow.The existing studies on this subject have generally been based on vertical and horiz... The lifting efficiency and stability of gas lift well are affected by the socalled slippage-loss effect in gas-liquid two-phase flow.The existing studies on this subject have generally been based on vertical and horizontal wells.Only a few of them have considered inclined pipes.In the present work a new focused study is presented along these lines.More specifically,we use the non-slip pressure drop model with Flanigan’s fluctuation correction coefficient formula(together with the parameters of slippage density,slippage pressure drop and slippage ratio)to analyze the influence of the inclination angle on slippage loss for different conditions(different gas-liquid superficial velocity and pipe diameters).Moreover,the“standard regression coefficient method”is used for multi-factor sensitivity analysis.The experimental results indicate that slippage loss is affected by multiple factors,and the influence of the inclination angle on slippage loss is less significant than other factors.The change of the slippage pressure drop with the superficial velocity of gas-liquid is similar to that of the total pressure drop.The inclination angles of 45°and 60°have the greatest influence on slippage loss.The correlation between slippage density and slippage ratio is not obvious.Using the so-called slippage ratio seems to be a more accurate option to evaluate the degree of slippage loss. 展开更多
关键词 Inclined pipes gas-liquid flow slippage loss pressure drop gas-liquid ratio
下载PDF
A Hydrodynamic Modei for Slug Frequency in Horizontal Gas-Liquid Two-Phase Flow 被引量:3
19
作者 刘磊 孙贺东 +1 位作者 胡志华 周芳德 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第5期508-514,共7页
The prediction of slug frequency has important significance on gas-liquid two-phase flow. A hydrody-namic modei was put forward to evaluate slug frequency for horizontal two-phase flow, based on the dependence of slug... The prediction of slug frequency has important significance on gas-liquid two-phase flow. A hydrody-namic modei was put forward to evaluate slug frequency for horizontal two-phase flow, based on the dependence of slug frequency on the frequency of unstable interfacial wave. Using air and water, experimental verification of the modei was carried out in a large range of flow parameters. Six electrical probes were installed at different positions of a horizontal plexiglass pipe to detect slug frequency development. The pipe is 30m long and its inner diameter is 24 mm. It is observed experimentally that the interfacial wave frequency at the inlet is about l to 3 times the frequency of stable slug. The slug frequencies predicted by the modei fit well with Tronconi (1990) modei and the experimental data. The combination of the hydrodynamic modei and the experimental data results in a conclusion that the frequency of equilibrium liquid slug is approximately half the miniraum frequency of interfacial wave. 展开更多
关键词 gas-liquid flow two-phase flow interfacial wave hydrodynamic model slug frequency
下载PDF
Multi-scale Chaotic Analysis of the Characteristics of Gas-Liquid Two-phase Flow Patterns 被引量:5
20
作者 李洪伟 周云龙 +1 位作者 孙斌 杨悦 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第5期880-888,共9页
Using the high-speed camera the time sequences of the classical flow patterns of horizontal gas-liquid pipe flow are recorded, from which the average gray-scale values of single-frame images are extracted. Thus obtain... Using the high-speed camera the time sequences of the classical flow patterns of horizontal gas-liquid pipe flow are recorded, from which the average gray-scale values of single-frame images are extracted. Thus obtained gray-scale time series is decomposed by the Empirical Mode Decomposition (EMD) method, the various scales of the signals are processed by Hurst exponent method, and then the dual-fractal characteristics are obtained. The scattered bubble and the bubble cluster theories are applied to the evolution analysis of two-phase flow patterns. At the same time the various signals are checked in the chaotic recursion chart by which the two typical characteristics (diagonal average length and Shannon entropy) are obtained. Resulting term of these properties, the dynamic characteristics of gas-liquid two-phase flow patterns are quantitatively analyzed. The results show that the evolution paths of gas-liquid two-phase flow patterns can be well characterized by the integrated analysis on the basis of the gray-scale time series of flowing images from EMD, Hurst exponents and Recurrence Plot (RP). In the middle frequency section (2nd, 3rd, 4th scales), three flow patterns decomposed by the EMD exhibit dual fractal characteristics which represent the dynamic features of bubble cluster, single bubble, slug bubble and scattered bubble. According to the change of diagonal average lengths and recursive Shannon entropy characteristic value, the structure deterministic of the slug flow is better than the other two patterns. After the decomposition by EMD the slug flow and the mist flow in the high frequency section have obvious peaks. Anyway, it is an effective way to understand and characterize the dynamic characteristics of two-phase flow patterns using the multi-scale non-linear analysis method based on image gray-scale fluctuation signals. 展开更多
关键词 gas-liquid two-phase flow gray-scale time series empirical mode decomposition Hurst exponent chaotic recurrence plot
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部