A double-chamber gas-liquid phase DBD reactor(GLDR), consisting of a gas-phase discharge chamber and a gas-liquid discharge chamber in series, was designed to enhance the degradation of benzene and the emission of NOx...A double-chamber gas-liquid phase DBD reactor(GLDR), consisting of a gas-phase discharge chamber and a gas-liquid discharge chamber in series, was designed to enhance the degradation of benzene and the emission of NOx. The performance of the GLDR on discharge characteristics,reactive species production and benzene degradation was compared to that of the single-chamber gas phase DBD reactor(GPDR). The effects of discharge gap, applied voltage, initial benzene concentration, gas flow rate and solution conductivity on the degradation and energy yield of benzene in the GLDR were investigated. The GLDR presents a higher discharge power, higher benzene degradation and higher energy yield than that of the GPDR. NO2 emission was remarkably inhibited in the GLDR, possibly due to the dissolution of NO2 in water. The benzene degradation efficiency increased with the applied voltage, but decreased with the initial concentration, gas flow rate, and gas discharge gap, while the solution conductivity presented less influence on benzene degradation. The benzene degradation efficiency and the energy yield reached 61.11% and 1.45 g k Wh-1 at 4 mm total gas discharge gap, 15 k V applied voltage, 200 ppm benzene concentration,0.2 L min-1 gas flow rate and 721 μS cm-1 water conductivity. The intermediates and byproducts during benzene degradation were detected by FT-IR, GC-MS and LC-MS primarily, and phenols,COx, and other aromatic substitutes, O3, NOx, etc, were determined as the main intermediates.According to these detected byproducts, a possible benzene degradation mechanism was proposed.展开更多
An atmospheric-pressure dielectric barrier discharge (DBD) gas-liquid cold plasma was employed to synthesize Cu-doped TiO~ nanoparticles in an aqueous solution with the assistance of [C2MIM]BF4 ionic liquid (IL) a...An atmospheric-pressure dielectric barrier discharge (DBD) gas-liquid cold plasma was employed to synthesize Cu-doped TiO~ nanoparticles in an aqueous solution with the assistance of [C2MIM]BF4 ionic liquid (IL) and using air as the working gas. The influences of the discharge voltage, IL and the amount of copper nitrite were investigated. X-ray diffraction, N2 adsorption-desorption measurements and UV-Vis spectroscopy were adopted to characterize the samples. The results showed that the specific surface area of TiO2 was promoted with Cu-doping (from 57.6 m^2.g^-1 to 106.2 m^2.g^-1 with 3% Cu-doping), and the content of anatase was increased. Besides, the band gap energy of TiO~ with Cu-doping decreased according to the UV-Vis spec- troscopy test. The 3%Cu-IL-TiO2 samples showed the highest eificiency in degrading methylene blue (MB) dye solutions under simulated sunlight with an apparent rate constant of 0.0223 min-1, which was 1.2 times higher than that of non-doped samples. According to the characterization results, the reasons for the high photocatalytic activity were discussed.展开更多
基金support of National Natural Science Foundation of China (No. 21577011)
文摘A double-chamber gas-liquid phase DBD reactor(GLDR), consisting of a gas-phase discharge chamber and a gas-liquid discharge chamber in series, was designed to enhance the degradation of benzene and the emission of NOx. The performance of the GLDR on discharge characteristics,reactive species production and benzene degradation was compared to that of the single-chamber gas phase DBD reactor(GPDR). The effects of discharge gap, applied voltage, initial benzene concentration, gas flow rate and solution conductivity on the degradation and energy yield of benzene in the GLDR were investigated. The GLDR presents a higher discharge power, higher benzene degradation and higher energy yield than that of the GPDR. NO2 emission was remarkably inhibited in the GLDR, possibly due to the dissolution of NO2 in water. The benzene degradation efficiency increased with the applied voltage, but decreased with the initial concentration, gas flow rate, and gas discharge gap, while the solution conductivity presented less influence on benzene degradation. The benzene degradation efficiency and the energy yield reached 61.11% and 1.45 g k Wh-1 at 4 mm total gas discharge gap, 15 k V applied voltage, 200 ppm benzene concentration,0.2 L min-1 gas flow rate and 721 μS cm-1 water conductivity. The intermediates and byproducts during benzene degradation were detected by FT-IR, GC-MS and LC-MS primarily, and phenols,COx, and other aromatic substitutes, O3, NOx, etc, were determined as the main intermediates.According to these detected byproducts, a possible benzene degradation mechanism was proposed.
基金supported by National Natural Science Foundation of China(Nos.21173028,11505019)the Science and Technology Research Project of Liaoning Provincial Education Department(No.L2013464)+2 种基金the Scientific Research Foundation for the Doctor of Liaoning Province(No.20131004)the Program for Liaoning Excellent Talents in University(No.LR2012042)Dalian Jinzhou New District Science and Technology Plan Project(No.KJCX-ZTPY-2014-0001)
文摘An atmospheric-pressure dielectric barrier discharge (DBD) gas-liquid cold plasma was employed to synthesize Cu-doped TiO~ nanoparticles in an aqueous solution with the assistance of [C2MIM]BF4 ionic liquid (IL) and using air as the working gas. The influences of the discharge voltage, IL and the amount of copper nitrite were investigated. X-ray diffraction, N2 adsorption-desorption measurements and UV-Vis spectroscopy were adopted to characterize the samples. The results showed that the specific surface area of TiO2 was promoted with Cu-doping (from 57.6 m^2.g^-1 to 106.2 m^2.g^-1 with 3% Cu-doping), and the content of anatase was increased. Besides, the band gap energy of TiO~ with Cu-doping decreased according to the UV-Vis spec- troscopy test. The 3%Cu-IL-TiO2 samples showed the highest eificiency in degrading methylene blue (MB) dye solutions under simulated sunlight with an apparent rate constant of 0.0223 min-1, which was 1.2 times higher than that of non-doped samples. According to the characterization results, the reasons for the high photocatalytic activity were discussed.