Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer betwe...Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer between substrate, copper centers, and O2is one of the key steps in the catalytic turnover of SLAC. However, limited research has been conducted on the electron transfer pathway of SLAC and SLAC-catalyzed reactions, hindering further engineering of SLAC to produce tunable biocatalysts for novel applications. Herein, the combinational use of electron paramagnetic resonance(EPR) and ultraviolet-visible(UV-vis) spectroscopic methods coupled with redox titration were employed to monitor the electron transfer processes and obtain further insights into the electron transfer pathway in SLAC. The reduction potentials for type 1 copper(T1Cu), type 2 copper(T2Cu) and type 3copper(T3Cu) were determined to be 367 ± 2 mV, 378 ± 5 m V and 403 ± 2 mV,respectively. Moreover, the reduction potential of a selected substrate of SLAC, hydroquinone(HQ), was determined to be 288 mV using cyclic voltammetry(CV). In this way, an electron transfer pathway was identified based on the reduction potentials. Specifically,electrons are transferred from HQ to T1Cu, then to T2Cu and T3Cu, and finally to O2.Furthermore, superhyperfine splitting observed via EPR during redox titration indicated a modification in the covalency of T2Cu upon electron uptake, suggesting a conformational alteration in the protein environment surrounding the copper sites, which could potentially influence the reduction potential of the copper sites during catalytic processes. The results presented here not only provide a comprehensive method for analyzing the electron transfer pathway in metalloenzymes through reduction potential measurements, but also offer valuable insights for further engineering and directed evolution studies of SLAC in the aim for biotechnological and industrial applications.展开更多
The microscopic heterogeneity of pore-throat structures in tight sandstone is a crucial parameter for understanding the transport mechanism of fluid flow.In this work,we firstly developed the new procedure to characte...The microscopic heterogeneity of pore-throat structures in tight sandstone is a crucial parameter for understanding the transport mechanism of fluid flow.In this work,we firstly developed the new procedure to characterize the pore size distribution(PSD)and throat size distribution(TSD)by combining the nuclear magnetic resonance(NMR),cast thin section(CTS),and constant-rate mercury injection(CRMI)tests,and used the permeability estimated model to verify the full-scale PSD and TSD.Then,we respectively analyzed the fractal feature of the pore and throat,and characterized the heterogeneity of pores and throats.Finally,we elaborated the effect of the pore and throat heterogeneity on the gas-phase seepage capacity base on the analysis of the simple capillary tube model and gas-flooding experiment.The results showed that(1)The PSD and TSD of the tight sandstone sample ranged from 0.01 to 10 mm and from 0.1 to 57 mm,respectively,mainly contributed by the micropores and mesopores.Meanwhile,the permeability estimated by the PSD and TSD was consistent with the experimental permeability,and relative error was lower than 8%.(2)The PSD and TSD exhibited multifractal characteristics,and singularity strength range,Δα,could be used as the indicator for characterizing the heterogeneity of pore and throat.Furthermore,the throat of the sample showed stronger heterogeneity than that the pore.(3)The throats played an important role for the fluid transport in the tight sandstone,and the effect of the throat heterogeneity on the gas-phase seepage capacity was different under the lower and higher injection pressure.The macropores and micropores maybe respectively become the preferential migration pathways at the lower and higher injection pressure.In the end,the identification plate was established in our paper,and could be described the relationship among the throat heterogeneity,injection pressure,permeability and flow path of the gas phase in the tight sandstone.展开更多
A new method for the determination of aniline in environmental water based on oscillopolarographic titration was presented in this paper. Several factors including the kind, concentration, and volume of acid, the dosa...A new method for the determination of aniline in environmental water based on oscillopolarographic titration was presented in this paper. Several factors including the kind, concentration, and volume of acid, the dosage of potassium bromide, the temperature and concentration of concomitant substances were investigated in detail. The experimental results indicated that this method was simple, rapid, and sensitive. The linear range was 8.367 × 10(?4) to 2.789 × 10(?2) mol L(?1), the relative standard deviation (R.S.D.) was lower than 0.96%, and the spiked recoveries of aniline in environmental water samples were in the range of 99.4–106.9% under the optimal conditions. The results indicated that the present method could be used as an alternative method for aniline determination in realworld water samples.展开更多
The stability constants and thermodynamic functions for complexes of lanthanum with eight kind of amino acids according to 1∶1 and 1∶2 in proportion have been determined by titration calorimeter at 298.15 K. The ent...The stability constants and thermodynamic functions for complexes of lanthanum with eight kind of amino acids according to 1∶1 and 1∶2 in proportion have been determined by titration calorimeter at 298.15 K. The enthalpy change makes a predominant contribution to the stability of these complexes. The ring in amino acid associated with lanthanum ion helps to enhance the stability of complexes. Steric effects between rings in complexes leads to that the equilibrium constants of reaction of the complexes (1∶2) is much less than that of the complexes (1∶1).展开更多
As a mono-sodium salt form of alendronic acid,alendronate sodium presents multi-level ionization for the dissociation of its four hydroxyl groups.The dissociation constants of alendronate sodium were determined in thi...As a mono-sodium salt form of alendronic acid,alendronate sodium presents multi-level ionization for the dissociation of its four hydroxyl groups.The dissociation constants of alendronate sodium were determined in this work by studying the piecewise linear relationship between volume of titrant and p H value based on acidbase potentiometric titration reaction.The distribution curves of alendronate sodium were drawn according to the determined p Ka values.There were 4 dissociation constants(pKa_1=2.43,pKa_2=7.55,pKa_3=10.80,pKa_4=11.99,respectively) of alendronate sodium,and 12 existing forms,of which 4 could be ignored,existing in different p H environments.展开更多
By using calcium ion selective elatrode (Ca ISE) as indicating electrode, saturated calomel electrode (SCE) as reference electrode and EGTA as titrant, calcium in seawater was determined by potentiometric titration in...By using calcium ion selective elatrode (Ca ISE) as indicating electrode, saturated calomel electrode (SCE) as reference electrode and EGTA as titrant, calcium in seawater was determined by potentiometric titration in borate buffer solution. This method can reduce observation errors in the determination of the endpoint, and thus provide better analytical precision(<0.08%) than present complexometric titration.展开更多
Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an el...Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an electrolytic cell, constructed using phosphoric acid-doped polybenz- imidazole (PBI) membrane, which allowed operation at 170 ℃ Pt/C and PtMo/C with variable ratio of Pt/Mo were studied as the cathode catalysts. The results showed that PtMo/C catalysts significantly enhanced CO formation and inhibited CH4 formation compared with Pt/C catalyst. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy revealed that most Mo species existed as MoO3 in PtMo/C catalysts and the interaction between Pt and MoOx was likely responsible for the enhanced CO formation rate although these bicomponent catalysts in general had a larger particle size than Pt/C catalyst.展开更多
The analytical technique of conductometric titration is used to characterize polymeric materials.This technique allows obtaining the polymer dry weight capacity(DWC) and the extent of reaction and establishing the opt...The analytical technique of conductometric titration is used to characterize polymeric materials.This technique allows obtaining the polymer dry weight capacity(DWC) and the extent of reaction and establishing the optimal number of water molecules per sulfonic groups.In this particular case the polymer material under study was Nafion?117.Two different reactions were made: Neutralization and exchange.Both of them allow obtaining the same result.Conductometric titrations could be considered as a good method to study the neutralization and exchange reactions for polymeric materials used in fuel cells or electrolyzers.The implementation of this analytical technique allows reducing operation time of those types of materials.The waiting time between determinations permits to say that the amount of reactant consumed and products obtained were the same after each addition of titrant.展开更多
The compositions of the extracted complexes of La, Gd, Er and Y with sec octyl phenoxy acetic acid in heptane and the related apparent extraction equilibrium constants K M were determined using two phase titration...The compositions of the extracted complexes of La, Gd, Er and Y with sec octyl phenoxy acetic acid in heptane and the related apparent extraction equilibrium constants K M were determined using two phase titration technique. The stoichiometric compounds for La, Gd, Er and Y should be LaA 3·2.5HA, GdA 3·3HA, ErA 3·3.1HA and YA 3·4.3HA respectively. And their p K M are 3.43, 3.46, 3.08 and 2.58 respectively.展开更多
The gas-phase synthesis of dimethyl carbonate (DMC) from methanol, carbon monoxide and oXygen has here Studied in a flow system at atomspheric Pressure. A series of Catalyst used in this reaCtion have been prepared an...The gas-phase synthesis of dimethyl carbonate (DMC) from methanol, carbon monoxide and oXygen has here Studied in a flow system at atomspheric Pressure. A series of Catalyst used in this reaCtion have been prepared and evaluated. The influence of trivared carbon supporters, alkaline metal Promoters and operation conditions on DMC opthesis reaction has been discussed. Under the conditions of 130℃, CO/O2=1 .96, SV=3340h-1, the space-time yield (STY) of DMC over PdCl2-CuCl2-CH3COOK/ac. catalyst is 217g/l-cat h,which is higher than what is published in the literatUre so far.展开更多
A rapid, simple and sensitive method was demonstrated for the determination of phenolic compounds in water samples by alternating-current oscillopolarographic titration. With the presence of sulfuric acid, phenol coul...A rapid, simple and sensitive method was demonstrated for the determination of phenolic compounds in water samples by alternating-current oscillopolarographic titration. With the presence of sulfuric acid, phenol could be transferred into a nitroso-compound by reacting with NaNO2. The titration end-point was obtained by the formation of a sharp cut in the oscillopolarographic with infinitesimal NaNO2 on double platinum electrodes. The results showed that phenol had an excellent linear relationship over the range of 4.82×10^-6 -9.65×10^-3 mol/L, the RSD of the proposed method was lower than 1.5%, and the spiked recoveries of three real water samples were in the range of 95.6%-106.9%.展开更多
Developing of non-metallic catalyst to replace metal catalyst is a meaningful and challenging direction.In this work,the non-metallic catalyst was synthetized successfully by loading ionic liquid onto the silica surfa...Developing of non-metallic catalyst to replace metal catalyst is a meaningful and challenging direction.In this work,the non-metallic catalyst was synthetized successfully by loading ionic liquid onto the silica surface,which was applied for the gas-phase dehydrochlorination of 1,1,2,2-tetrachloroethane.The 12%TPPC/SiO2(wt%)showed the best results with the conversion of 1,1,2,2-tetrachloroethane reaching 100%.The selectivity of 1,1,2-trichloroethylene was 100%,and no deactivation was found during the evaluation period.The catalytic mechanism was investigated and possible reaction route was given,which was a reference for fabricating and design of solid base catalyst.展开更多
Amount and properties of roots surface charge are important for nutrient uptake and balance in plants. Roots surface charge markedly varies at different rizosphere conditions (particularly pH and ionic strength), whic...Amount and properties of roots surface charge are important for nutrient uptake and balance in plants. Roots surface charge markedly varies at different rizosphere conditions (particularly pH and ionic strength), which can markedly alter during vegetation season. Among recently available measuring methods, surface charge-pH dependence of roots (as well as other biological objects) is most easily evaluated by potentiometric titration. Use of this method is also easy at different ionic strengths. Potentiometric titration also allows for estimation of the distribution of charge generating surface groups. However, many applications of this method seem to be based either on incorrect methodical or theoretical approaches. In this paper we discuss the methodical and theoretical backgrounds of the titration method. Basing on experimental titration curves of roots of barley grown in nutrient solution, we show inconsistency of surface charge results obtained at different measuring conditions. Limitations of theoretical interpretations of the results are outlined also.展开更多
Mg-Zn binary alloys fabricated by the gas-phase alloying technique under vacuum condition were investigated in the state of initial state and after heat treatment for the microstructure and electrochemical behaviors.D...Mg-Zn binary alloys fabricated by the gas-phase alloying technique under vacuum condition were investigated in the state of initial state and after heat treatment for the microstructure and electrochemical behaviors.Different from the traditional Mg-Zn alloys preparation methods,alloys prepared by gas-phase alloying have a large number of intermetallic compounds,such as MgZn,Mg7Zn3 and MgZn2.After solution treatment,the boundary of the eutectic disappeared and the size ofα-Mg increased from 100μm to 150μm.At the same time,the value of the resistance of charge transfer increased,which indicates that the resistance of the charge transfer and the corrosion resistance of the alloys increased.After artificial aging treatment,the distribution ofα-Mg was more uniform and its size was reduced to about 50μm,and there was new eutectic structure formed.The newly formed eutectic structure forms galvanic cells with the alloy matrix,which makes the corrosion resistance of the alloy weaken.展开更多
The performance of the single-stage anaerobic digestion of kitchen wastes was investigated in an anaerobic sequencing batch reactor(ASBR) with gas-phased absorb of CO 2. The ASBR was operated at four chemical oxygen ...The performance of the single-stage anaerobic digestion of kitchen wastes was investigated in an anaerobic sequencing batch reactor(ASBR) with gas-phased absorb of CO 2. The ASBR was operated at four chemical oxygen demand(COD) loading rates, 2.8, 5.1, 6.2 and 8.4 g/(L·d) respectively. The COD loading rate was increased with the TS concentration and HRT changing. At maximum COD loading rate of 8.4 g/(L·d), the COD, total solid(TS) removal rate and methane gas yield were 69%, 68% and 2.5 L/(L·d) respectively. The operation of the reactor with gas-phased absorb of CO 2 was stable in spite of the low pH(2.6—3.9) and high concentration of TS(142 g/L) of input mixture. The output volatile fatty acid(VFA) concentration was between 2.7—4.7 g/L and had no inhibition on the methanogenic microorganism. The reactor without gas-phased absorb of CO 2 became acidified when the total COD loading rate was increased to 5.1 g/(L·d). Stoichiometry of the methanogenesis for kitchen wastes showed a considerable amount of alkaline will be required to keep pH in the appropriate range for the methanogenic microorganism based on theoretical calculation. Gas-phased absorb of CO 2 effectively reduced the alkaline consumption, hence avoided excessive cation into the reactor.展开更多
In water treatment processes and conditioning drinking water, PEs are widely used;however, their environmental impact is still doubtful, since residual concentrations increase organic matter content and represents a p...In water treatment processes and conditioning drinking water, PEs are widely used;however, their environmental impact is still doubtful, since residual concentrations increase organic matter content and represents a potential health hazard. This paper demonstrates a multiparametric study of two colloidal titration methods: spectrophotometric and zeta potential end point detection. The first one was optimized to guarantee the accuracy of cationic commercial PE quantification. It includes the indicator dose optimization using analytical criteria for competing equilibria, a calibration curve for two ranges of CPE concentration (1 - 5 ppm and 5 - 100 ppm) and the interference study of flocculant and Sn in the CPE quantification. The second method provides a physicochemical validation of the electric surface phenomena occurring during the colloidal titration and the end point detection. As an additional contribution the zeta potential titration was discussed and proposed as an alternative method for quantifying CPE when the sample is metal free.展开更多
Rocky desertification has become a major environmental issue in the karst region of southwestern China.Karst rocky desertification was more severe in regions of limestone soil than in adjacent regions of other soils,d...Rocky desertification has become a major environmental issue in the karst region of southwestern China.Karst rocky desertification was more severe in regions of limestone soil than in adjacent regions of other soils,despite the relatively higher soil organic matter(SOM)content in limestone soil.The underlying mechanism remains ambiguous.We speculated that the geochemical characteristics of limestone soils in the karst region plays an essential role,especially the high calcium content of limestone soil.To test this hypothesis,we collected limestone soil samples from a limestone soil profile in the southwestern China karst region and extracted humic acid(HA)from these limestone soil samples.We investigated the interaction of Ca^(2+)and three HA samples on a joint experimental platform,which consists of an automatic potentiometric titrator,a UV–visible spectrometer,and a Fluorescence spectrometer.HA solutions were titrated by Ca^(2+)and optical spectra of the HA solutions were monitored during the titration experiments.The results indicated that:(1)the interaction of Ca^(2+)and HA is a combined process of adsorption and complexation.Adsorption dominated the overall distribution behavior of Ca^(2+),which could be fit by Langmuir and Freundlich isotherm models.Complexation was distinguished only when the concentration of Ca2+is low;(2)the changes of UV–visible spectroscopy and excitation–emission matrix fluorescencespectroscopy spectra of HA samples when they were binding with Ca^(2+)implied the apparent molecular size and structure of HA became larger and more complex;(3)the combination of Ca^(2+)and HA plays an important role in the SOM preservation of limestone soils but the stability of the Ca–HA association was relatively weak.The present study draws attention to maintaining the relatively higher Ca^(2+)concentration in limestone soils in ecologic restoration attempts in karst regions.展开更多
Small-cell HSY-S zeolite prepared by the gas-phase ultra-stable method had been researched and developed,and industrial preparation tests of HSY-S have been successfully carried out for the first time.The acid resista...Small-cell HSY-S zeolite prepared by the gas-phase ultra-stable method had been researched and developed,and industrial preparation tests of HSY-S have been successfully carried out for the first time.The acid resistance of industrially prepared HSY-S was investigated by acid solutions with different pH values.The structures and properties of HSY-S and its acid-treated samples were characterized by XRD,XRF,BET,and IR.Results show that the HSY-S samples have the characteristics of high crystallinity,good stability,large specific surface area,and good acid resistance.展开更多
The precursors of La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ(LSCCF, x=0.05, 0.10, 0.15, 0.20) as the cathode materials for intermediate temperature solid oxide fuel cell (ITSOFC) were prepared by reverse titration co-precipitatio...The precursors of La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ(LSCCF, x=0.05, 0.10, 0.15, 0.20) as the cathode materials for intermediate temperature solid oxide fuel cell (ITSOFC) were prepared by reverse titration co-precipitation method with metal-nitrates as starting materials and mixed alkali (NaOH and Na2CO3) as a precipitating agent. The formation process of LSCCF from the precursors was monitored by TG-DSC, and the crystal structure and particles morphology of the precursors which were calcined at 600, 800, 1000 ℃ for 3 h were characterized using XRD, SEM technologies. Compared with the solid state reaction of constituent oxides, when the pH value of the precipitating solution was in the range of 9.1~9.5, the LSCCF powders from the precursors caclined at 800 ℃ for 3 h had high purity, homogeneous and single perovskite phase. The electrical conductivity of the LSCCF samples sintered at 1200 ℃ for 3 h, which was measured as a function of temperatures from 100 to 800 ℃ by DC four-probe method in air, decreased with x from 0.05 to 0.20. The value of electrical conductivity was almost equal because of Ca2+, Sr2+ co-dopant resulting in the 'mix effect' while x=0.10 or 0.15. The electrical conductivity of all doped samples was higher than 100 S·cm-1 at intermediate temperatures from 500 to 800 ℃, and there was good compatibility between the LSCCF cathode and Ce0.8Sm0.2O2 electrolyte.展开更多
基金supported by the National Natural Science Foundation of China (21825703, 21927814)the National Key R&D Program of China (2019YFA0405600, 2019YFA0706900, 2021YFA1200104, 2022YFC3400500)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences (XDB0540200, XDB37040201)Plans for Major Provincial Science&Technology Projects (202303a07020004)Basic Research Program Based on Major Scientific Infrastructures,CAS (JZHKYPT-2021-05)the Youth Innovation Promotion Association,CAS (2022455)
文摘Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer between substrate, copper centers, and O2is one of the key steps in the catalytic turnover of SLAC. However, limited research has been conducted on the electron transfer pathway of SLAC and SLAC-catalyzed reactions, hindering further engineering of SLAC to produce tunable biocatalysts for novel applications. Herein, the combinational use of electron paramagnetic resonance(EPR) and ultraviolet-visible(UV-vis) spectroscopic methods coupled with redox titration were employed to monitor the electron transfer processes and obtain further insights into the electron transfer pathway in SLAC. The reduction potentials for type 1 copper(T1Cu), type 2 copper(T2Cu) and type 3copper(T3Cu) were determined to be 367 ± 2 mV, 378 ± 5 m V and 403 ± 2 mV,respectively. Moreover, the reduction potential of a selected substrate of SLAC, hydroquinone(HQ), was determined to be 288 mV using cyclic voltammetry(CV). In this way, an electron transfer pathway was identified based on the reduction potentials. Specifically,electrons are transferred from HQ to T1Cu, then to T2Cu and T3Cu, and finally to O2.Furthermore, superhyperfine splitting observed via EPR during redox titration indicated a modification in the covalency of T2Cu upon electron uptake, suggesting a conformational alteration in the protein environment surrounding the copper sites, which could potentially influence the reduction potential of the copper sites during catalytic processes. The results presented here not only provide a comprehensive method for analyzing the electron transfer pathway in metalloenzymes through reduction potential measurements, but also offer valuable insights for further engineering and directed evolution studies of SLAC in the aim for biotechnological and industrial applications.
基金financial support from the Youth Science and Technology Innovation Team of Southwest Petroleum University(No.2018CXTD10)the National Natural Science Foundation Project of China(No.51874248 and No.U19B2010).
文摘The microscopic heterogeneity of pore-throat structures in tight sandstone is a crucial parameter for understanding the transport mechanism of fluid flow.In this work,we firstly developed the new procedure to characterize the pore size distribution(PSD)and throat size distribution(TSD)by combining the nuclear magnetic resonance(NMR),cast thin section(CTS),and constant-rate mercury injection(CRMI)tests,and used the permeability estimated model to verify the full-scale PSD and TSD.Then,we respectively analyzed the fractal feature of the pore and throat,and characterized the heterogeneity of pores and throats.Finally,we elaborated the effect of the pore and throat heterogeneity on the gas-phase seepage capacity base on the analysis of the simple capillary tube model and gas-flooding experiment.The results showed that(1)The PSD and TSD of the tight sandstone sample ranged from 0.01 to 10 mm and from 0.1 to 57 mm,respectively,mainly contributed by the micropores and mesopores.Meanwhile,the permeability estimated by the PSD and TSD was consistent with the experimental permeability,and relative error was lower than 8%.(2)The PSD and TSD exhibited multifractal characteristics,and singularity strength range,Δα,could be used as the indicator for characterizing the heterogeneity of pore and throat.Furthermore,the throat of the sample showed stronger heterogeneity than that the pore.(3)The throats played an important role for the fluid transport in the tight sandstone,and the effect of the throat heterogeneity on the gas-phase seepage capacity was different under the lower and higher injection pressure.The macropores and micropores maybe respectively become the preferential migration pathways at the lower and higher injection pressure.In the end,the identification plate was established in our paper,and could be described the relationship among the throat heterogeneity,injection pressure,permeability and flow path of the gas phase in the tight sandstone.
文摘A new method for the determination of aniline in environmental water based on oscillopolarographic titration was presented in this paper. Several factors including the kind, concentration, and volume of acid, the dosage of potassium bromide, the temperature and concentration of concomitant substances were investigated in detail. The experimental results indicated that this method was simple, rapid, and sensitive. The linear range was 8.367 × 10(?4) to 2.789 × 10(?2) mol L(?1), the relative standard deviation (R.S.D.) was lower than 0.96%, and the spiked recoveries of aniline in environmental water samples were in the range of 99.4–106.9% under the optimal conditions. The results indicated that the present method could be used as an alternative method for aniline determination in realworld water samples.
基金Supported by the National Nature Science Foundation of China(29873036)
文摘The stability constants and thermodynamic functions for complexes of lanthanum with eight kind of amino acids according to 1∶1 and 1∶2 in proportion have been determined by titration calorimeter at 298.15 K. The enthalpy change makes a predominant contribution to the stability of these complexes. The ring in amino acid associated with lanthanum ion helps to enhance the stability of complexes. Steric effects between rings in complexes leads to that the equilibrium constants of reaction of the complexes (1∶2) is much less than that of the complexes (1∶1).
基金the support of Key Laboratory of Chinese Medicine Preparation of Solid Dispersion,Gansu Longshenrongfa Pharmaceutical Industry Co.,Ltd.,Gansu Province,China
文摘As a mono-sodium salt form of alendronic acid,alendronate sodium presents multi-level ionization for the dissociation of its four hydroxyl groups.The dissociation constants of alendronate sodium were determined in this work by studying the piecewise linear relationship between volume of titrant and p H value based on acidbase potentiometric titration reaction.The distribution curves of alendronate sodium were drawn according to the determined p Ka values.There were 4 dissociation constants(pKa_1=2.43,pKa_2=7.55,pKa_3=10.80,pKa_4=11.99,respectively) of alendronate sodium,and 12 existing forms,of which 4 could be ignored,existing in different p H environments.
文摘By using calcium ion selective elatrode (Ca ISE) as indicating electrode, saturated calomel electrode (SCE) as reference electrode and EGTA as titrant, calcium in seawater was determined by potentiometric titration in borate buffer solution. This method can reduce observation errors in the determination of the endpoint, and thus provide better analytical precision(<0.08%) than present complexometric titration.
基金supported by the Ministry of Science and Technology of China(Grant No:2012CB215500 and 2013CB933100)the National Natural Science Foundation of China(Grant No:21103178 and 21033009)
文摘Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an electrolytic cell, constructed using phosphoric acid-doped polybenz- imidazole (PBI) membrane, which allowed operation at 170 ℃ Pt/C and PtMo/C with variable ratio of Pt/Mo were studied as the cathode catalysts. The results showed that PtMo/C catalysts significantly enhanced CO formation and inhibited CH4 formation compared with Pt/C catalyst. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy revealed that most Mo species existed as MoO3 in PtMo/C catalysts and the interaction between Pt and MoOx was likely responsible for the enhanced CO formation rate although these bicomponent catalysts in general had a larger particle size than Pt/C catalyst.
基金supported by the Defense Ministry of Argentina under Grant PIDDEF No.22/11
文摘The analytical technique of conductometric titration is used to characterize polymeric materials.This technique allows obtaining the polymer dry weight capacity(DWC) and the extent of reaction and establishing the optimal number of water molecules per sulfonic groups.In this particular case the polymer material under study was Nafion?117.Two different reactions were made: Neutralization and exchange.Both of them allow obtaining the same result.Conductometric titrations could be considered as a good method to study the neutralization and exchange reactions for polymeric materials used in fuel cells or electrolyzers.The implementation of this analytical technique allows reducing operation time of those types of materials.The waiting time between determinations permits to say that the amount of reactant consumed and products obtained were the same after each addition of titrant.
文摘The compositions of the extracted complexes of La, Gd, Er and Y with sec octyl phenoxy acetic acid in heptane and the related apparent extraction equilibrium constants K M were determined using two phase titration technique. The stoichiometric compounds for La, Gd, Er and Y should be LaA 3·2.5HA, GdA 3·3HA, ErA 3·3.1HA and YA 3·4.3HA respectively. And their p K M are 3.43, 3.46, 3.08 and 2.58 respectively.
文摘The gas-phase synthesis of dimethyl carbonate (DMC) from methanol, carbon monoxide and oXygen has here Studied in a flow system at atomspheric Pressure. A series of Catalyst used in this reaCtion have been prepared and evaluated. The influence of trivared carbon supporters, alkaline metal Promoters and operation conditions on DMC opthesis reaction has been discussed. Under the conditions of 130℃, CO/O2=1 .96, SV=3340h-1, the space-time yield (STY) of DMC over PdCl2-CuCl2-CH3COOK/ac. catalyst is 217g/l-cat h,which is higher than what is published in the literatUre so far.
基金Project supported by the Creative Talented Person's Fund of Henan Province (High Teaching [2005]-126)the Natural Science Foundation of Henan Province (No. 0511053000)+1 种基金the Youth Science Foundation of Henan Normal University (No. 2004005)the Henan Key Laboratory for Environmental Pollution Control.
文摘A rapid, simple and sensitive method was demonstrated for the determination of phenolic compounds in water samples by alternating-current oscillopolarographic titration. With the presence of sulfuric acid, phenol could be transferred into a nitroso-compound by reacting with NaNO2. The titration end-point was obtained by the formation of a sharp cut in the oscillopolarographic with infinitesimal NaNO2 on double platinum electrodes. The results showed that phenol had an excellent linear relationship over the range of 4.82×10^-6 -9.65×10^-3 mol/L, the RSD of the proposed method was lower than 1.5%, and the spiked recoveries of three real water samples were in the range of 95.6%-106.9%.
基金financed by the National Natural Science Foundation of China(NSFC-21476207,91534114,21776256)。
文摘Developing of non-metallic catalyst to replace metal catalyst is a meaningful and challenging direction.In this work,the non-metallic catalyst was synthetized successfully by loading ionic liquid onto the silica surface,which was applied for the gas-phase dehydrochlorination of 1,1,2,2-tetrachloroethane.The 12%TPPC/SiO2(wt%)showed the best results with the conversion of 1,1,2,2-tetrachloroethane reaching 100%.The selectivity of 1,1,2-trichloroethylene was 100%,and no deactivation was found during the evaluation period.The catalytic mechanism was investigated and possible reaction route was given,which was a reference for fabricating and design of solid base catalyst.
文摘Amount and properties of roots surface charge are important for nutrient uptake and balance in plants. Roots surface charge markedly varies at different rizosphere conditions (particularly pH and ionic strength), which can markedly alter during vegetation season. Among recently available measuring methods, surface charge-pH dependence of roots (as well as other biological objects) is most easily evaluated by potentiometric titration. Use of this method is also easy at different ionic strengths. Potentiometric titration also allows for estimation of the distribution of charge generating surface groups. However, many applications of this method seem to be based either on incorrect methodical or theoretical approaches. In this paper we discuss the methodical and theoretical backgrounds of the titration method. Basing on experimental titration curves of roots of barley grown in nutrient solution, we show inconsistency of surface charge results obtained at different measuring conditions. Limitations of theoretical interpretations of the results are outlined also.
基金Project(2015DFR50990-01)supported by the International Cooperation Project of Ministry of Science and Technology of ChinaProject(2016KF-01)supported by the Shaanxi Key Laboratory of Nano-materials and Technology,ChinaProject(2015CXY-01)supported by the Cooperation Project on the Integration of Industry,Education and Research of Yulin Science and Technology Bureau,China。
文摘Mg-Zn binary alloys fabricated by the gas-phase alloying technique under vacuum condition were investigated in the state of initial state and after heat treatment for the microstructure and electrochemical behaviors.Different from the traditional Mg-Zn alloys preparation methods,alloys prepared by gas-phase alloying have a large number of intermetallic compounds,such as MgZn,Mg7Zn3 and MgZn2.After solution treatment,the boundary of the eutectic disappeared and the size ofα-Mg increased from 100μm to 150μm.At the same time,the value of the resistance of charge transfer increased,which indicates that the resistance of the charge transfer and the corrosion resistance of the alloys increased.After artificial aging treatment,the distribution ofα-Mg was more uniform and its size was reduced to about 50μm,and there was new eutectic structure formed.The newly formed eutectic structure forms galvanic cells with the alloy matrix,which makes the corrosion resistance of the alloy weaken.
文摘The performance of the single-stage anaerobic digestion of kitchen wastes was investigated in an anaerobic sequencing batch reactor(ASBR) with gas-phased absorb of CO 2. The ASBR was operated at four chemical oxygen demand(COD) loading rates, 2.8, 5.1, 6.2 and 8.4 g/(L·d) respectively. The COD loading rate was increased with the TS concentration and HRT changing. At maximum COD loading rate of 8.4 g/(L·d), the COD, total solid(TS) removal rate and methane gas yield were 69%, 68% and 2.5 L/(L·d) respectively. The operation of the reactor with gas-phased absorb of CO 2 was stable in spite of the low pH(2.6—3.9) and high concentration of TS(142 g/L) of input mixture. The output volatile fatty acid(VFA) concentration was between 2.7—4.7 g/L and had no inhibition on the methanogenic microorganism. The reactor without gas-phased absorb of CO 2 became acidified when the total COD loading rate was increased to 5.1 g/(L·d). Stoichiometry of the methanogenesis for kitchen wastes showed a considerable amount of alkaline will be required to keep pH in the appropriate range for the methanogenic microorganism based on theoretical calculation. Gas-phased absorb of CO 2 effectively reduced the alkaline consumption, hence avoided excessive cation into the reactor.
文摘In water treatment processes and conditioning drinking water, PEs are widely used;however, their environmental impact is still doubtful, since residual concentrations increase organic matter content and represents a potential health hazard. This paper demonstrates a multiparametric study of two colloidal titration methods: spectrophotometric and zeta potential end point detection. The first one was optimized to guarantee the accuracy of cationic commercial PE quantification. It includes the indicator dose optimization using analytical criteria for competing equilibria, a calibration curve for two ranges of CPE concentration (1 - 5 ppm and 5 - 100 ppm) and the interference study of flocculant and Sn in the CPE quantification. The second method provides a physicochemical validation of the electric surface phenomena occurring during the colloidal titration and the end point detection. As an additional contribution the zeta potential titration was discussed and proposed as an alternative method for quantifying CPE when the sample is metal free.
基金supported by the National Natural Science Foundation of China (U1701241, U1612441,41773147, and 41273149)the Science Foundation of Guizhou(20113109) 。
文摘Rocky desertification has become a major environmental issue in the karst region of southwestern China.Karst rocky desertification was more severe in regions of limestone soil than in adjacent regions of other soils,despite the relatively higher soil organic matter(SOM)content in limestone soil.The underlying mechanism remains ambiguous.We speculated that the geochemical characteristics of limestone soils in the karst region plays an essential role,especially the high calcium content of limestone soil.To test this hypothesis,we collected limestone soil samples from a limestone soil profile in the southwestern China karst region and extracted humic acid(HA)from these limestone soil samples.We investigated the interaction of Ca^(2+)and three HA samples on a joint experimental platform,which consists of an automatic potentiometric titrator,a UV–visible spectrometer,and a Fluorescence spectrometer.HA solutions were titrated by Ca^(2+)and optical spectra of the HA solutions were monitored during the titration experiments.The results indicated that:(1)the interaction of Ca^(2+)and HA is a combined process of adsorption and complexation.Adsorption dominated the overall distribution behavior of Ca^(2+),which could be fit by Langmuir and Freundlich isotherm models.Complexation was distinguished only when the concentration of Ca2+is low;(2)the changes of UV–visible spectroscopy and excitation–emission matrix fluorescencespectroscopy spectra of HA samples when they were binding with Ca^(2+)implied the apparent molecular size and structure of HA became larger and more complex;(3)the combination of Ca^(2+)and HA plays an important role in the SOM preservation of limestone soils but the stability of the Ca–HA association was relatively weak.The present study draws attention to maintaining the relatively higher Ca^(2+)concentration in limestone soils in ecologic restoration attempts in karst regions.
基金The authors gratefully acknowledge the funding of the project by SINOPEC(No.118001-6).
文摘Small-cell HSY-S zeolite prepared by the gas-phase ultra-stable method had been researched and developed,and industrial preparation tests of HSY-S have been successfully carried out for the first time.The acid resistance of industrially prepared HSY-S was investigated by acid solutions with different pH values.The structures and properties of HSY-S and its acid-treated samples were characterized by XRD,XRF,BET,and IR.Results show that the HSY-S samples have the characteristics of high crystallinity,good stability,large specific surface area,and good acid resistance.
基金the National High-Tech Development Plan (2006AA05Z417)the Natural Science Foundation of Lia-oning Province (20062145)the Education department of Liaoning Province (05L073)
文摘The precursors of La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ(LSCCF, x=0.05, 0.10, 0.15, 0.20) as the cathode materials for intermediate temperature solid oxide fuel cell (ITSOFC) were prepared by reverse titration co-precipitation method with metal-nitrates as starting materials and mixed alkali (NaOH and Na2CO3) as a precipitating agent. The formation process of LSCCF from the precursors was monitored by TG-DSC, and the crystal structure and particles morphology of the precursors which were calcined at 600, 800, 1000 ℃ for 3 h were characterized using XRD, SEM technologies. Compared with the solid state reaction of constituent oxides, when the pH value of the precipitating solution was in the range of 9.1~9.5, the LSCCF powders from the precursors caclined at 800 ℃ for 3 h had high purity, homogeneous and single perovskite phase. The electrical conductivity of the LSCCF samples sintered at 1200 ℃ for 3 h, which was measured as a function of temperatures from 100 to 800 ℃ by DC four-probe method in air, decreased with x from 0.05 to 0.20. The value of electrical conductivity was almost equal because of Ca2+, Sr2+ co-dopant resulting in the 'mix effect' while x=0.10 or 0.15. The electrical conductivity of all doped samples was higher than 100 S·cm-1 at intermediate temperatures from 500 to 800 ℃, and there was good compatibility between the LSCCF cathode and Ce0.8Sm0.2O2 electrolyte.