Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe...Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.展开更多
Effective thermal management is quite urgent for electronics owing to their ever-growing integration degree,operation frequency and power density,and the main strategy of thermal management is to remove excess energy ...Effective thermal management is quite urgent for electronics owing to their ever-growing integration degree,operation frequency and power density,and the main strategy of thermal management is to remove excess energy from electronics to outside by thermal conductive materials.Compared to the conventional thermal management materials,flexible thermally conductive films with high in-plane thermal conductivity,as emerging candidates,have aroused greater interest in the last decade,which show great potential in thermal management applications of next-generation devices.However,a comprehensive review of flexible thermally conductive films is rarely reported.Thus,we review recent advances of both intrinsic polymer films and polymer-based composite films with ultrahigh in-plane thermal conductivity,with deep understandings of heat transfer mechanism,processing methods to enhance thermal conductivity,optimization strategies to reduce interface thermal resistance and their potential applications.Lastly,challenges and opportunities for the future development of flexible thermally conductive films are also discussed.展开更多
ITO thin films were grown on PC(polycarbonate), PMMA(polymethyl methacrylate) and glass substrates by r.f. magnetron sputtering. The electrical, structural and chemical characteristics of ITO films were analyzed b...ITO thin films were grown on PC(polycarbonate), PMMA(polymethyl methacrylate) and glass substrates by r.f. magnetron sputtering. The electrical, structural and chemical characteristics of ITO films were analyzed by the Hall Technique, X-ray diffraction, and X-ray photoelectron spectroscopy. XPS studies suggest that all the ITO films consist of crystalline and amorphous phases. The degree of crystallinity increases from less than 45% to more than 90% when the substrate temperature increases from 80 to 300 ℃. The In and Sn exist in the chemical state of In^3+ and Sn^4+, respectively, independent of substrate type and temperature. The enrichment of Sn on surface and In in body of ITO films are also revealed. And, the oxygen deficient regions exist both in surface layer and film body. For ITO films deposited under 180 ℃ , the carrier concentration are mainly provided by oxygen vacancies, and the dominant electron carrier scattering mechanism is grain boundary scattering between the crystal and the amorphous grain. For ITO films deposited over 180 ℃, the carrier concentration are provided by tin doping, and the dominant scattering mechanism transforms from grain boundary scattering between the crystal grains to ionized impurity scattering with increasing deposition temperature.展开更多
Nano-scale titanium oxide memristors exhibit complex conductive characteristics, which have already been proved by existing research. One possible reason for this is that more than one mechanism exists, and together t...Nano-scale titanium oxide memristors exhibit complex conductive characteristics, which have already been proved by existing research. One possible reason for this is that more than one mechanism exists, and together they codetermine the conductive behaviors of the memristor. In this paper, we first analyze the theoretical base and conductive process of a memristor, and then propose a compatible circuit model to discuss and simulate the coexistence of the dopant drift and tunnel barrier-based mechanisms. Simulation results are given and compared with the published experimental data to prove the possibility of the coexistence. This work provides a practical model and some suggestions for studying the conductive mechanisms of memristors.展开更多
We employed a melt ultrasonic treatment near the liquidus to prepare a high-thermal-conductivity Al-4Si-2Ni-0.8Fe-0.4Mg alloy.The influences of various ultrasonic powers on its microstructure,mechanical properties,and...We employed a melt ultrasonic treatment near the liquidus to prepare a high-thermal-conductivity Al-4Si-2Ni-0.8Fe-0.4Mg alloy.The influences of various ultrasonic powers on its microstructure,mechanical properties,and thermal conductivity were investigated.It is shown that near-liquidus ultrasonication significantly refines the alloy grains and eutectic structure,synergistically improving the alloy’s mechanical properties and thermal conductivity.Specifically,the grain size decreased by 84.5%from 941.4 to 186.2μm.Increasing the ultrasonic power improved the thermal conductivity of the alloy slightly and significantly enhanced its mechanical properties.At an ultrasonic power of 2100 W,the tensile strength,yield strength,elongation rate,and thermal conductivity were 216 MPa,142 MPa,6.3%,and 169 W/(m·k),respectively.展开更多
Alloying seriously deteriorates the thermal conductivity of magnesium(Mg)alloys,thus,restricts their applications in the fields of computer,communication,and consumer products.In order to improve the thermal conductiv...Alloying seriously deteriorates the thermal conductivity of magnesium(Mg)alloys,thus,restricts their applications in the fields of computer,communication,and consumer products.In order to improve the thermal conductivity of Mg alloys,adding carbon nanotube(CNT)combined with aging treatment is proposed in this work,i.e.fabricating the D-CNT(a kind of dispersed CNT)reinforced ZK61 matrix composite via powder metallurgy,and conducting aging treatment to the composite.Results indicate the as-aged ZK61/0.6 wt.%D-CNT composite achieved an excellent thermal conductivity of 166 W/(mK),exhibiting 52.3%enhancement in comparison with matrix,as well as tensile yield strength of 321 MPa,ultimate tensile strength of 354 of MPa,and elongation of 14%.The simultaneously enhanced thermal conductivity and mechanical performance are mainly attributed to:(1)the embedded interface of the D-CNT with matrix and(2)the coherent interface of precipitates with matrix.It is expected the current work can provide a clue for devising Mg matrix composites with integrated structural and functional performances,and enlarge the current restricted applications of Mg alloys.展开更多
The microstructure and conductive mechanism of high density polyethylene/carbon black (HDPE/CB) composite were investigated by positron annihilation lifetime spectroscopy (PALS). The PALS were measured in two series o...The microstructure and conductive mechanism of high density polyethylene/carbon black (HDPE/CB) composite were investigated by positron annihilation lifetime spectroscopy (PALS). The PALS were measured in two series of samples, one with various CB contents in the composites and the other with various gamma-irradiation doses in HDPE/CB composite containing 20 wt% CB. It was found that CB particles distribute in the amorphous regions, the CB critical content value in HDPE/CB composite is about 16.7 wt% and the suitable gamma-irradiation dose for improving the conductive behavior of HDPE/CB composite is about 20 Mrad. The result observed for the second set of samples suggests that gamma-irradiation causes not only cross-linking in amorphous regions but also destruction of the partial crystalline structure. Therefore, a suitable irradiation dose, about 20 Mrad, can induce sufficient cross-linking in the amorphous regions without enhancing the decomposition of crystalline structure, so that the positive temperature coefficient (PTC) effect remains while the negative temperature coefficient (NTC) effect is suppressed. A new interpretation of the conductive mechanism, which might provide a more detailed explanation of the PTC effect and the NTC effect has been proposed.展开更多
Owing to their excellent mechanical flexibility, electrical conductivity, and biocompatibility, conductive hydrogels(CHs) are widely used in the fields of energy and power, and biomedical technology. To arrive at a be...Owing to their excellent mechanical flexibility, electrical conductivity, and biocompatibility, conductive hydrogels(CHs) are widely used in the fields of energy and power, and biomedical technology. To arrive at a better understanding of the design methods and development trends of CHs, this paper summarizes and analyzes related research published in recent years. First,we describe the properties and characteristics of CHs. Using Scopus, the world’s largest abstract and citation database, we conducted a quantitative analysis of the related literature from the past 15 years and summarized development trends in the field of CHs. Second, we describe the types of CH network crosslinking and basic functional design methods and summarize the three-dimensional(3D) structure-forming methods and conductive performance tests of CHs. In addition, we introduce applications of CHs in the fields of energy and power, biomedical technology, and others. Lastly, we discuss several problems in current CH research and introduce some prospects for the future development of CHs.展开更多
Metamaterials are defined as artificially designed micro-architectures with unusual physical properties,including optical,electromagnetic,mechanical,and thermal characteristics.This study investigates the compressive ...Metamaterials are defined as artificially designed micro-architectures with unusual physical properties,including optical,electromagnetic,mechanical,and thermal characteristics.This study investigates the compressive mechanical and heat transfer properties of AlSi10Mg gradient metamaterials fabricated by Laser Powder Bed Fusion(LPBF).The morphology of the AlSi10Mg metamaterials was examined using an ultrahigh-resolution microscope.Quasi-static uniaxial compression tests were conducted at room temperature,with deformation behavior captured through camera recordings.The findings indicate that the proposed gradient metamaterial exhibits superior compressive strength properties and energy absorption capacity.The Gradient-SplitP structure demonstrated better compressive performance compared to other strut-based structures,including Gradient-Gyroid and Gradient-Lidinoid structures.With an apparent density of 0.796,the Gradient-SplitP structure exhibited an outstanding energy absorption capacity,reaching an impressive 23.57 MJ/m^(3).In addition,heat conductivity tests were performed to assess the thermal resistance of these structures with different cell configurations.The gradient metamaterials exhibited higher thermal resistance and lower thermal conductivity.Consequently,the designed gradient metamaterials can be considered valuable in various applications,such as thermal management,load-bearing,and energy absorption components.展开更多
Micrometer-sized diamonds were incorporated into silicon nitride(Si_(3)N_(4))matrix to manufacture high-performance Si_(3)N_(4)-based composites using spark plasma sintering at 1500℃under 50 MPa.The effects of the di...Micrometer-sized diamonds were incorporated into silicon nitride(Si_(3)N_(4))matrix to manufacture high-performance Si_(3)N_(4)-based composites using spark plasma sintering at 1500℃under 50 MPa.The effects of the diamond content on the phase composition,microstructure,mechanical properties and thermal conductivity of the composites were investigated.The results showed that the addition of diamond could effectively improve the hardness of the material.The thermal conductivity of Si_(3)N_(4)increased to 52.97 W/m·k at the maximum with the addition of 15 wt%diamond,which was 27.5%higher than that of the monolithic Si_(3)N_(4).At this point,the fracture toughness was 7.54 MPa·m^(1/2).Due to the addition of diamond,the composite material generated a new substance,MgSiN2,which effectively combined Si_(3)N_(4)with diamond.MgSiN2 might improve the hardness and thermal conductivity of the materials.展开更多
Transparent conducting F-doped texture SnO2 films with resistivity as low as 5× 10-4 Ω ·cm,with carrier concentrations between 3.5 × 1020 and 7× 1020 cm-3 and Hall mobilities from 15.7 to 20.1 cm2...Transparent conducting F-doped texture SnO2 films with resistivity as low as 5× 10-4 Ω ·cm,with carrier concentrations between 3.5 × 1020 and 7× 1020 cm-3 and Hall mobilities from 15.7 to 20.1 cm2/(V/s) have been prepared by atmosphere pressure chemical vapour deposition (APCVD). These polycrystalline films possess a variable preferred orientation, the polycrystallite sizes and orientations vary with substrate temperature. The substrate temperature and fluorine flow rate dependence of conductivity, Hall mobility and carrier conentration fOr the resultingfilms have been obtained. The temperature dependence of the mobiity and carrier concentrationhave been measured over a temperature range 16~400 K. A systematically theoretical analysis on scattering mechanisms for the highly conductive SnO2 films has been given. Both theoretical analysis and experimental results indicate that for these degenerate, polycrystalline SnO2 :F films in the low temperature range (below 100 K), ionized impurity scattering is main scattering mechanism. However, when the temperature is higher than 100 K, the lattice vibration scattering becomes dominant. The grain boundary scattering makes a small contribution to limit the mobility of the films.展开更多
The molecular thin films of Rose Bengal (RB) embedded in polymethyl methacrylate matrix are fabricated by using the spin-coating technique. The macroscopic current-voltage (I-V) characterization of the film shows ...The molecular thin films of Rose Bengal (RB) embedded in polymethyl methacrylate matrix are fabricated by using the spin-coating technique. The macroscopic current-voltage (I-V) characterization of the film shows that the RB molecule has two conductance switching states with a high ON/OFF ratio in ambient conditions. The infrared spectra indicate that intermolecular hydrogen bonds can form in the RB thin films after their hydrolysis in air. With the first-principles calculations, we demonstrate that the hydrogen bonds will be destroyed in concomitance with the conformational change when the RB molecule switches to its high-conductance state after applying a voltage.展开更多
Na_(5+x) YAl_x Si_(4-x) O_(12) polycrystalline solid electrolytes are prepared by solid reactions. By the analyses of X-ray, TG and DTA, infrared spectu re, and SEM, the variasion of their density with the composition...Na_(5+x) YAl_x Si_(4-x) O_(12) polycrystalline solid electrolytes are prepared by solid reactions. By the analyses of X-ray, TG and DTA, infrared spectu re, and SEM, the variasion of their density with the composition X are discussed Their electric conductivity in the temperature range of R. T. to 300℃ are determined with electric brigde, and their variasions with the compositions X and temperature are studied. Their activations in the tem- perature range 140℃ to 300℃ are calculated, and their variation with the compositons X are discussed.展开更多
The microporous corundum material was prepared using alumina micro-powder as the main raw material, alumina sol and starch as binders by a wet process, achieving the bulk density of 3.05 g · cm^-3, the apparent p...The microporous corundum material was prepared using alumina micro-powder as the main raw material, alumina sol and starch as binders by a wet process, achieving the bulk density of 3.05 g · cm^-3, the apparent porosity of 9. 1%, the closed porosity of 12.3%, the median pore diameter of 0. 43 μm, and the thermal conductivity of 6. 5 W· m^-1· K^-1 at 800 ℃ which is 41.6% lower than that of common corundum. The slag resistance of the microporous corundum material was studied by immersion and compared with that of the common corundum aggregate, and the slag resistant mechanism of microporous corundum material was revealed. The results show that the slag resistance of the microporous corundum material is superior to that of the common corundum aggregate, the SEM and EDX show that on the reaction interface between microporous corundum and molten, slag, a continuous isolation layer with a large quantity of CA2 and CA6 columnar crystals is formed; while the common corundum aggregate reacts with the molten slag interface to form a discontinuous isolation layer of columnar crystals, through which a lot of molten slag corrodes or permeates into the aggregate. The mechanism is mainly that the microporous structure is more advantageous to nucleation and growth of CA2 and CA6 columnar crystals; in the reaction with the aggregate, the molten slag gets saturated and the critical solution thickness of the microporous corundum and the common corundum is 0. 16 μm and 0. 34 μm, respectively, this is caused by the smaller microporous corundum aggregate pores; and the smaller pores also increase the second phase ripening rate of microporous corundum, which is 9. 7 times of that of the common corundum.展开更多
The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa i...The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa in a frequency range of 10-1 Hz–106 Hz. The measured electrical conductivity along the ⊥ [001] axis direction decreases with increasing pressure, and the activation energy and activation volume of charge carriers are determined to be 1.04 ± 0.06 e V and 2.51 ± 0.19 cm~3/mole, respectively. The electrical conductivity of K-feldspar is highly anisotropic, and its value along the⊥ [001] axis is approximately three times higher than that along the ⊥ [100] axis. At 2.0 GPa, the diffusion coefficient of ionic potassium is obtained from the electrical conductivity data using the Nernst–Einstein equation. The measured electrical conductivity and calculated diffusion coefficient of potassium suggest that the main conduction mechanism is of ionic conduction, therefore the dominant charge carrier is transferred between normal lattice potassium positions and adjacent interstitial sites along the thermally activated electric field.展开更多
High thermal conductivity dense silica bricks have the higher thermal conductivity than ordinary silica bricks,which is conducive to the realization of energy saving and emission reduction in the iron and steel indust...High thermal conductivity dense silica bricks have the higher thermal conductivity than ordinary silica bricks,which is conducive to the realization of energy saving and emission reduction in the iron and steel industry.The performance of ordinary silica bricks and high thermal conductivity dense silica bricks was compared,and the high thermal conductivity mechanism was analyzed.The results show that(1)compared with ordinary silica bricks,high thermal conductivity dense silica bricks have the characteristics of higher thermal conductivity,lower apparent porosity,higher tridymite content,higher compressive strength,and higher thermal expansion;(2)by increasing the tridymite content and reducing the porosity,the close packing of honeycombα-tridymite improves the density and continuity of the SiO_(2)frame structure of the silica bricks,and the larger area perpendicular to the heat transfer direction improves the thermal conductivity of the bricks;(3)the densification of the silica bricks also increases the thermal expansion of the bricks,but they still meet the standard requirements.展开更多
The conductivity of non-crystalline fast ionic conductor for B_2O_3-Li_2O-LiCl-Al_2O_3 system is studiedin this paper. The glass structure of this system is discussed by means of infrared spectrum and X-ray fluorescen...The conductivity of non-crystalline fast ionic conductor for B_2O_3-Li_2O-LiCl-Al_2O_3 system is studiedin this paper. The glass structure of this system is discussed by means of infrared spectrum and X-ray fluorescence analysis, and the effects of LiCl and A1_2O_3 on the conductivity of Li^+ in the system are studied as well. Adding Li_2O to the system gives rise to transfer from [BO_3] triangular units to [BO_4] tetrahedral. When Li_2O content exceeds 30mol%, the main group of the glass is the diborate group with more [BO_4] tetrahedra. The adding of LiCl has no obvious influence on the glass structure, and LiCl is under a state dissociated by network, but with the increase of LiCl, the increase of conductivity is obvious. By adding A1_2O_3, the glass can be formed when the room-temperature is cooling down,the conductivity decreases while the conductive activatory energy increases for the glass. The experiment shows that conductivity in the room-temperature is σ= 6.2×10^(-6)Ω^(-1)cm^(-1), when at 300℃, the σ=6.8×10^(-3)Ω^(-1)cm^(-1). The conductive activatory energy computed is 0.6~1.0eV.展开更多
In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced...In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced with the diameter of 9.5 mm by continuous rheo-extrusion technology, and the extruded materials were heat treated and analyzed. The results show that the separate additions of 0.16% Sc and 0.16% Zr to pure Al improve the ultimate tensile strength but reduce the electrical conductivity, and the similar trend is found in the Al-0.12Sc-0.04 Zr alloy. After the subsequent heat treatment, the wire with the optimum comprehensive properties is Al-0.12Sc-0.04 Zr alloy, of which the ultimate tensile strength and electrical conductivity reach 160 MPa and 64.03%(IACS), respectively.展开更多
The initial copper with large grain sizes of 60-100 μm was processed by six passes asymmetrical accumulative rolling-bond (AARB) and annealing, the ultra-fine-grained (UFG) copper with grain size of 200 nm was ob...The initial copper with large grain sizes of 60-100 μm was processed by six passes asymmetrical accumulative rolling-bond (AARB) and annealing, the ultra-fine-grained (UFG) copper with grain size of 200 nm was obtained, and the microstructures and properties were studied. The results show that there are large sub-structures and also texture component C for the UFG copper obtained by six passes AARB, possessing high strength and microhardness in company with poor elongation and conductivity. Thereafter, the UFG copper was annealed at 220 °C for 35 min, in which the sub-structures disappear, the grain boundaries are composed of big angle grain boundaries, and the textures are composed of a variety of texture components and parts of twins. Compared with the UFG copper obtained by six passes AARB, the tensile strength and yield strength for the UFG copper obtained by six passes AARB and annealing at 220 °C for 35 min are decreased slightly, the elongation and conductivity are improved obviously.展开更多
The effect of rare earth element Ce on mechanical performance and electrical conductivity of aluminum rod for electrical purpose were studied under industrial production condition. Using optical microscope, SEM, TEM, ...The effect of rare earth element Ce on mechanical performance and electrical conductivity of aluminum rod for electrical purpose were studied under industrial production condition. Using optical microscope, SEM, TEM, EDS and X-ray diffractometer, the microstructure and phase composition of aluminum rod were measured and analyzed. The results indicate that the content of rare earth element Ce is between 0.05% -0.16% in the aluminum rod for electrical purpose. Its tensile strength is enhanced to some extent. The research also discovers that the tensile strength is enhanced remarkably with impurity element Si content increases. Because influence of Si is big to the conductivity, the Si content should be controlled continuously strictly in the aluminum for electrical purpose. Adding rare earth element Ce reduces the solid solubility of Si in the aluminum matrix, and the negative effect of Si on the aluminum conductor reduces effectively. So the limit of in Si content in aluminum rod for electrical purpose can be relaxed moderately.展开更多
基金the National Natural Science Foundation of China(Nos.22209095 and 22238004).
文摘Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.
基金funded by the National Natural Science Foundation of China (NNSFC grant nos. 52103034, 51873126, 52175331 and 52003170)Shandong Provincial Natural Science Foundation (ZR2021QE014, ZR2020ZD04)
文摘Effective thermal management is quite urgent for electronics owing to their ever-growing integration degree,operation frequency and power density,and the main strategy of thermal management is to remove excess energy from electronics to outside by thermal conductive materials.Compared to the conventional thermal management materials,flexible thermally conductive films with high in-plane thermal conductivity,as emerging candidates,have aroused greater interest in the last decade,which show great potential in thermal management applications of next-generation devices.However,a comprehensive review of flexible thermally conductive films is rarely reported.Thus,we review recent advances of both intrinsic polymer films and polymer-based composite films with ultrahigh in-plane thermal conductivity,with deep understandings of heat transfer mechanism,processing methods to enhance thermal conductivity,optimization strategies to reduce interface thermal resistance and their potential applications.Lastly,challenges and opportunities for the future development of flexible thermally conductive films are also discussed.
文摘ITO thin films were grown on PC(polycarbonate), PMMA(polymethyl methacrylate) and glass substrates by r.f. magnetron sputtering. The electrical, structural and chemical characteristics of ITO films were analyzed by the Hall Technique, X-ray diffraction, and X-ray photoelectron spectroscopy. XPS studies suggest that all the ITO films consist of crystalline and amorphous phases. The degree of crystallinity increases from less than 45% to more than 90% when the substrate temperature increases from 80 to 300 ℃. The In and Sn exist in the chemical state of In^3+ and Sn^4+, respectively, independent of substrate type and temperature. The enrichment of Sn on surface and In in body of ITO films are also revealed. And, the oxygen deficient regions exist both in surface layer and film body. For ITO films deposited under 180 ℃ , the carrier concentration are mainly provided by oxygen vacancies, and the dominant electron carrier scattering mechanism is grain boundary scattering between the crystal and the amorphous grain. For ITO films deposited over 180 ℃, the carrier concentration are provided by tin doping, and the dominant scattering mechanism transforms from grain boundary scattering between the crystal grains to ionized impurity scattering with increasing deposition temperature.
基金supported by the National Natural Science Foundation of China(Grant No.61171017)
文摘Nano-scale titanium oxide memristors exhibit complex conductive characteristics, which have already been proved by existing research. One possible reason for this is that more than one mechanism exists, and together they codetermine the conductive behaviors of the memristor. In this paper, we first analyze the theoretical base and conductive process of a memristor, and then propose a compatible circuit model to discuss and simulate the coexistence of the dopant drift and tunnel barrier-based mechanisms. Simulation results are given and compared with the published experimental data to prove the possibility of the coexistence. This work provides a practical model and some suggestions for studying the conductive mechanisms of memristors.
基金Funded by the Zhaoqing Xijiang Innovation and Entrepreneurship Team Project Funding of China(No.2017A0109004)。
文摘We employed a melt ultrasonic treatment near the liquidus to prepare a high-thermal-conductivity Al-4Si-2Ni-0.8Fe-0.4Mg alloy.The influences of various ultrasonic powers on its microstructure,mechanical properties,and thermal conductivity were investigated.It is shown that near-liquidus ultrasonication significantly refines the alloy grains and eutectic structure,synergistically improving the alloy’s mechanical properties and thermal conductivity.Specifically,the grain size decreased by 84.5%from 941.4 to 186.2μm.Increasing the ultrasonic power improved the thermal conductivity of the alloy slightly and significantly enhanced its mechanical properties.At an ultrasonic power of 2100 W,the tensile strength,yield strength,elongation rate,and thermal conductivity were 216 MPa,142 MPa,6.3%,and 169 W/(m·k),respectively.
基金supported by National Key Research and Development Program of China(No.2021YFB3701100)Beijing Natural Science Foundation(2192006)National Natural Science Foundation of China(51801004).
文摘Alloying seriously deteriorates the thermal conductivity of magnesium(Mg)alloys,thus,restricts their applications in the fields of computer,communication,and consumer products.In order to improve the thermal conductivity of Mg alloys,adding carbon nanotube(CNT)combined with aging treatment is proposed in this work,i.e.fabricating the D-CNT(a kind of dispersed CNT)reinforced ZK61 matrix composite via powder metallurgy,and conducting aging treatment to the composite.Results indicate the as-aged ZK61/0.6 wt.%D-CNT composite achieved an excellent thermal conductivity of 166 W/(mK),exhibiting 52.3%enhancement in comparison with matrix,as well as tensile yield strength of 321 MPa,ultimate tensile strength of 354 of MPa,and elongation of 14%.The simultaneously enhanced thermal conductivity and mechanical performance are mainly attributed to:(1)the embedded interface of the D-CNT with matrix and(2)the coherent interface of precipitates with matrix.It is expected the current work can provide a clue for devising Mg matrix composites with integrated structural and functional performances,and enlarge the current restricted applications of Mg alloys.
基金This work was supported by the National Natural Science Foundation of China (Grant No: 19875050, 10075041, 10075044).
文摘The microstructure and conductive mechanism of high density polyethylene/carbon black (HDPE/CB) composite were investigated by positron annihilation lifetime spectroscopy (PALS). The PALS were measured in two series of samples, one with various CB contents in the composites and the other with various gamma-irradiation doses in HDPE/CB composite containing 20 wt% CB. It was found that CB particles distribute in the amorphous regions, the CB critical content value in HDPE/CB composite is about 16.7 wt% and the suitable gamma-irradiation dose for improving the conductive behavior of HDPE/CB composite is about 20 Mrad. The result observed for the second set of samples suggests that gamma-irradiation causes not only cross-linking in amorphous regions but also destruction of the partial crystalline structure. Therefore, a suitable irradiation dose, about 20 Mrad, can induce sufficient cross-linking in the amorphous regions without enhancing the decomposition of crystalline structure, so that the positive temperature coefficient (PTC) effect remains while the negative temperature coefficient (NTC) effect is suppressed. A new interpretation of the conductive mechanism, which might provide a more detailed explanation of the PTC effect and the NTC effect has been proposed.
基金supported by the Research Project Funding of National University of Defense Technology of China (No.ZK19-33)the National Postdoctoral International Exchange Program Funding for Incoming Postdoctoral Students (Postdoctoral No.48127)+1 种基金the Science and Technology Innovation Program of Hunan Province (No.2020RC2036)the National Natural Science Foundation of China (Nos.52105039 and 52175069)。
文摘Owing to their excellent mechanical flexibility, electrical conductivity, and biocompatibility, conductive hydrogels(CHs) are widely used in the fields of energy and power, and biomedical technology. To arrive at a better understanding of the design methods and development trends of CHs, this paper summarizes and analyzes related research published in recent years. First,we describe the properties and characteristics of CHs. Using Scopus, the world’s largest abstract and citation database, we conducted a quantitative analysis of the related literature from the past 15 years and summarized development trends in the field of CHs. Second, we describe the types of CH network crosslinking and basic functional design methods and summarize the three-dimensional(3D) structure-forming methods and conductive performance tests of CHs. In addition, we introduce applications of CHs in the fields of energy and power, biomedical technology, and others. Lastly, we discuss several problems in current CH research and introduce some prospects for the future development of CHs.
基金Supported by National Natural Science Foundation of China(Grant No.12272045)the BIT Research and Innovation Promoting Project(Grant No.2023YCXZ025).
文摘Metamaterials are defined as artificially designed micro-architectures with unusual physical properties,including optical,electromagnetic,mechanical,and thermal characteristics.This study investigates the compressive mechanical and heat transfer properties of AlSi10Mg gradient metamaterials fabricated by Laser Powder Bed Fusion(LPBF).The morphology of the AlSi10Mg metamaterials was examined using an ultrahigh-resolution microscope.Quasi-static uniaxial compression tests were conducted at room temperature,with deformation behavior captured through camera recordings.The findings indicate that the proposed gradient metamaterial exhibits superior compressive strength properties and energy absorption capacity.The Gradient-SplitP structure demonstrated better compressive performance compared to other strut-based structures,including Gradient-Gyroid and Gradient-Lidinoid structures.With an apparent density of 0.796,the Gradient-SplitP structure exhibited an outstanding energy absorption capacity,reaching an impressive 23.57 MJ/m^(3).In addition,heat conductivity tests were performed to assess the thermal resistance of these structures with different cell configurations.The gradient metamaterials exhibited higher thermal resistance and lower thermal conductivity.Consequently,the designed gradient metamaterials can be considered valuable in various applications,such as thermal management,load-bearing,and energy absorption components.
基金Funded by the Key Research and Development Plan of Jiangxi Province(No.2020ZDYFB0017)the National Key Research and Development Plan(No.2021YFB3701400)the National Natural Science Foundation of China((No.92163208)。
文摘Micrometer-sized diamonds were incorporated into silicon nitride(Si_(3)N_(4))matrix to manufacture high-performance Si_(3)N_(4)-based composites using spark plasma sintering at 1500℃under 50 MPa.The effects of the diamond content on the phase composition,microstructure,mechanical properties and thermal conductivity of the composites were investigated.The results showed that the addition of diamond could effectively improve the hardness of the material.The thermal conductivity of Si_(3)N_(4)increased to 52.97 W/m·k at the maximum with the addition of 15 wt%diamond,which was 27.5%higher than that of the monolithic Si_(3)N_(4).At this point,the fracture toughness was 7.54 MPa·m^(1/2).Due to the addition of diamond,the composite material generated a new substance,MgSiN2,which effectively combined Si_(3)N_(4)with diamond.MgSiN2 might improve the hardness and thermal conductivity of the materials.
文摘Transparent conducting F-doped texture SnO2 films with resistivity as low as 5× 10-4 Ω ·cm,with carrier concentrations between 3.5 × 1020 and 7× 1020 cm-3 and Hall mobilities from 15.7 to 20.1 cm2/(V/s) have been prepared by atmosphere pressure chemical vapour deposition (APCVD). These polycrystalline films possess a variable preferred orientation, the polycrystallite sizes and orientations vary with substrate temperature. The substrate temperature and fluorine flow rate dependence of conductivity, Hall mobility and carrier conentration fOr the resultingfilms have been obtained. The temperature dependence of the mobiity and carrier concentrationhave been measured over a temperature range 16~400 K. A systematically theoretical analysis on scattering mechanisms for the highly conductive SnO2 films has been given. Both theoretical analysis and experimental results indicate that for these degenerate, polycrystalline SnO2 :F films in the low temperature range (below 100 K), ionized impurity scattering is main scattering mechanism. However, when the temperature is higher than 100 K, the lattice vibration scattering becomes dominant. The grain boundary scattering makes a small contribution to limit the mobility of the films.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60771037 and 10774176)the National High Technology Research and Development Program of China (Grant No 2006CB921305)
文摘The molecular thin films of Rose Bengal (RB) embedded in polymethyl methacrylate matrix are fabricated by using the spin-coating technique. The macroscopic current-voltage (I-V) characterization of the film shows that the RB molecule has two conductance switching states with a high ON/OFF ratio in ambient conditions. The infrared spectra indicate that intermolecular hydrogen bonds can form in the RB thin films after their hydrolysis in air. With the first-principles calculations, we demonstrate that the hydrogen bonds will be destroyed in concomitance with the conformational change when the RB molecule switches to its high-conductance state after applying a voltage.
文摘Na_(5+x) YAl_x Si_(4-x) O_(12) polycrystalline solid electrolytes are prepared by solid reactions. By the analyses of X-ray, TG and DTA, infrared spectu re, and SEM, the variasion of their density with the composition X are discussed Their electric conductivity in the temperature range of R. T. to 300℃ are determined with electric brigde, and their variasions with the compositions X and temperature are studied. Their activations in the tem- perature range 140℃ to 300℃ are calculated, and their variation with the compositons X are discussed.
基金Financial supports from the National Natural Science Foundation of China(Nos.51474165 and 51204126)
文摘The microporous corundum material was prepared using alumina micro-powder as the main raw material, alumina sol and starch as binders by a wet process, achieving the bulk density of 3.05 g · cm^-3, the apparent porosity of 9. 1%, the closed porosity of 12.3%, the median pore diameter of 0. 43 μm, and the thermal conductivity of 6. 5 W· m^-1· K^-1 at 800 ℃ which is 41.6% lower than that of common corundum. The slag resistance of the microporous corundum material was studied by immersion and compared with that of the common corundum aggregate, and the slag resistant mechanism of microporous corundum material was revealed. The results show that the slag resistance of the microporous corundum material is superior to that of the common corundum aggregate, the SEM and EDX show that on the reaction interface between microporous corundum and molten, slag, a continuous isolation layer with a large quantity of CA2 and CA6 columnar crystals is formed; while the common corundum aggregate reacts with the molten slag interface to form a discontinuous isolation layer of columnar crystals, through which a lot of molten slag corrodes or permeates into the aggregate. The mechanism is mainly that the microporous structure is more advantageous to nucleation and growth of CA2 and CA6 columnar crystals; in the reaction with the aggregate, the molten slag gets saturated and the critical solution thickness of the microporous corundum and the common corundum is 0. 16 μm and 0. 34 μm, respectively, this is caused by the smaller microporous corundum aggregate pores; and the smaller pores also increase the second phase ripening rate of microporous corundum, which is 9. 7 times of that of the common corundum.
基金Project supported by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant No.XDB 18010401)the Key Research Program of Frontier Sciences of CAS(Grant No.QYZDB-SSW-DQC009)+2 种基金the“135”Program of the Institute of Geochemistry of CASthe Hundred-Talent Program of CASthe National Natural Science Foundation of China(Grant Nos.41474078,41774099,and 41772042)
文摘The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa in a frequency range of 10-1 Hz–106 Hz. The measured electrical conductivity along the ⊥ [001] axis direction decreases with increasing pressure, and the activation energy and activation volume of charge carriers are determined to be 1.04 ± 0.06 e V and 2.51 ± 0.19 cm~3/mole, respectively. The electrical conductivity of K-feldspar is highly anisotropic, and its value along the⊥ [001] axis is approximately three times higher than that along the ⊥ [100] axis. At 2.0 GPa, the diffusion coefficient of ionic potassium is obtained from the electrical conductivity data using the Nernst–Einstein equation. The measured electrical conductivity and calculated diffusion coefficient of potassium suggest that the main conduction mechanism is of ionic conduction, therefore the dominant charge carrier is transferred between normal lattice potassium positions and adjacent interstitial sites along the thermally activated electric field.
文摘High thermal conductivity dense silica bricks have the higher thermal conductivity than ordinary silica bricks,which is conducive to the realization of energy saving and emission reduction in the iron and steel industry.The performance of ordinary silica bricks and high thermal conductivity dense silica bricks was compared,and the high thermal conductivity mechanism was analyzed.The results show that(1)compared with ordinary silica bricks,high thermal conductivity dense silica bricks have the characteristics of higher thermal conductivity,lower apparent porosity,higher tridymite content,higher compressive strength,and higher thermal expansion;(2)by increasing the tridymite content and reducing the porosity,the close packing of honeycombα-tridymite improves the density and continuity of the SiO_(2)frame structure of the silica bricks,and the larger area perpendicular to the heat transfer direction improves the thermal conductivity of the bricks;(3)the densification of the silica bricks also increases the thermal expansion of the bricks,but they still meet the standard requirements.
文摘The conductivity of non-crystalline fast ionic conductor for B_2O_3-Li_2O-LiCl-Al_2O_3 system is studiedin this paper. The glass structure of this system is discussed by means of infrared spectrum and X-ray fluorescence analysis, and the effects of LiCl and A1_2O_3 on the conductivity of Li^+ in the system are studied as well. Adding Li_2O to the system gives rise to transfer from [BO_3] triangular units to [BO_4] tetrahedral. When Li_2O content exceeds 30mol%, the main group of the glass is the diborate group with more [BO_4] tetrahedra. The adding of LiCl has no obvious influence on the glass structure, and LiCl is under a state dissociated by network, but with the increase of LiCl, the increase of conductivity is obvious. By adding A1_2O_3, the glass can be formed when the room-temperature is cooling down,the conductivity decreases while the conductive activatory energy increases for the glass. The experiment shows that conductivity in the room-temperature is σ= 6.2×10^(-6)Ω^(-1)cm^(-1), when at 300℃, the σ=6.8×10^(-3)Ω^(-1)cm^(-1). The conductive activatory energy computed is 0.6~1.0eV.
基金Project(51222405)supported by the National Natural Science Foundation for Outstanding Young Scholars of ChinaProject(51034002)supported by the National Natural Science Foundation of ChinaProject(120502001)supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced with the diameter of 9.5 mm by continuous rheo-extrusion technology, and the extruded materials were heat treated and analyzed. The results show that the separate additions of 0.16% Sc and 0.16% Zr to pure Al improve the ultimate tensile strength but reduce the electrical conductivity, and the similar trend is found in the Al-0.12Sc-0.04 Zr alloy. After the subsequent heat treatment, the wire with the optimum comprehensive properties is Al-0.12Sc-0.04 Zr alloy, of which the ultimate tensile strength and electrical conductivity reach 160 MPa and 64.03%(IACS), respectively.
基金Project (50804018) supported by the National Natural Science Foundation of ChinaProject (ZDS2010015C) supported by Key Lab of Advanced Materials in Rare and Precious and Non-ferrous Metals, Ministry of Education, KMUST, ChinaProject (2010DH025) supported by Yunnan Province Construction Plans of Scientific and Technological Conditions, China
文摘The initial copper with large grain sizes of 60-100 μm was processed by six passes asymmetrical accumulative rolling-bond (AARB) and annealing, the ultra-fine-grained (UFG) copper with grain size of 200 nm was obtained, and the microstructures and properties were studied. The results show that there are large sub-structures and also texture component C for the UFG copper obtained by six passes AARB, possessing high strength and microhardness in company with poor elongation and conductivity. Thereafter, the UFG copper was annealed at 220 °C for 35 min, in which the sub-structures disappear, the grain boundaries are composed of big angle grain boundaries, and the textures are composed of a variety of texture components and parts of twins. Compared with the UFG copper obtained by six passes AARB, the tensile strength and yield strength for the UFG copper obtained by six passes AARB and annealing at 220 °C for 35 min are decreased slightly, the elongation and conductivity are improved obviously.
基金Project supported by the Baotou Aluminum Co. Ltd.
文摘The effect of rare earth element Ce on mechanical performance and electrical conductivity of aluminum rod for electrical purpose were studied under industrial production condition. Using optical microscope, SEM, TEM, EDS and X-ray diffractometer, the microstructure and phase composition of aluminum rod were measured and analyzed. The results indicate that the content of rare earth element Ce is between 0.05% -0.16% in the aluminum rod for electrical purpose. Its tensile strength is enhanced to some extent. The research also discovers that the tensile strength is enhanced remarkably with impurity element Si content increases. Because influence of Si is big to the conductivity, the Si content should be controlled continuously strictly in the aluminum for electrical purpose. Adding rare earth element Ce reduces the solid solubility of Si in the aluminum matrix, and the negative effect of Si on the aluminum conductor reduces effectively. So the limit of in Si content in aluminum rod for electrical purpose can be relaxed moderately.