In the present paper,the spatio-temporal evolution of vorticity in the first wake instability,i.e.,(pure)mode A,is investigated in order to understand the wake vortex dynamics and sign relationships among vorticity co...In the present paper,the spatio-temporal evolution of vorticity in the first wake instability,i.e.,(pure)mode A,is investigated in order to understand the wake vortex dynamics and sign relationships among vorticity components.Direct numerical simulation(DNS)for the flow past a circular cylinder is performed,typically at a Reynolds number of 200,in the three-dimensional(3-D)wake transition.According to characteristics of time histories of fluid forces,three different stages are identified as the computational transition,the initial stage and fully developed wake.In the second initial stage,the original two-dimensional spanwise vortices become obviously three-dimensional associated with the streamwise or vertical vorticity intensified up to about 0.1.As a matter of fact,these additional vorticities,caused by the intrinsic 3-D instability,are already generated firstly on cylinder surfaces early in the computational transition,indicating that the three-dimensionality appeared early near the cylinder.The evolution of additional components of vorticity with features the same as mode A shows that(pure)mode A can be already formed in the late computational transition.Through careful analysis of the vorticity field on the front surface,in the shear layers and near wake at typical times,two sign laws are obtained.They illustrate intrinsic relationships among three vorticity components,irrelevant to the wavelength or Fourier mode and Reynolds number in(pure)mode A.Most importantly,the origin of streamwise vortices is found and explained by a new physical mechanism based on the theory of vortex-induced vortex.As a result,the whole process of formation and shedding vortices with these vorticities is firstly and completely illustrated.Other characteristics are presented in detail.展开更多
The near wake of a circular cylinder in linearly stratified flows of finite depth was experimentally investigated by means of flow visualization and measurements of vortex shedding frequencies, at Reynolds numbers 3.5...The near wake of a circular cylinder in linearly stratified flows of finite depth was experimentally investigated by means of flow visualization and measurements of vortex shedding frequencies, at Reynolds numbers 3.5 × 103-1.2 × 104 and stratification parameters kd 0-2.0. The non-dimensional parameter kd is defined as kd = Nd/U, where N is the Brunt-Vaisala frequency, d, the diameter of the cylinder, and U, the approaching flow velocity. The study demonstrates that as kd increases from zero, the vortex shedding from a circular cylinder progressively strengthens, while the Strouhal number gradually becomes lower than that for homogeneous flow. This phenomenon can be explained by the effect of the increasingly stable stratification which enhances the two-dimensionality of the near-wake flow of the circular cylinder;the enhanced two-dimensionality of the flow strengthens the roll-up of the separated shear layer. Above a certain value of kd, however, vortex formation and shedding are strongly suppressed and the Strouhal number rises sharply. This observation is attributable to the development of stationary lee waves downstream of the circular cylinder because the lee waves strongly suppress vertical fluid motions.展开更多
The study on the formation of vortex streets behind stationary circular cylinders is of substantial sense in engineering, since vortex streets play the leading role in introduction of vibration, generation of noise an...The study on the formation of vortex streets behind stationary circular cylinders is of substantial sense in engineering, since vortex streets play the leading role in introduction of vibration, generation of noise and wake instability, etc.. In the present paper, the Orr-Sommerfeld equation combined with measured velocity profiles is used to investigate the type of instability behind stationary cylinders, which determines the mechanism of vortex formation. The numerical calculations for Reynolds numbers of 56-140 000 imply that there is a range around the end of the dead water region in cylinder wakes where the instability belongs to the absolute type. Beyond the range, the flows show to be of the convective type. On the other hand, the flows tend to be of the convective instability when Reynolds number is below the subcritical value of forming vortex streets. All of the correspondent Strouhal numbers agree with experimental data very well. The formation of vortex streets behind stationary cylinders is proposed to be caused by an absolute instability in the near wake. There is always an absolute instability region for the Reynolds numbers from 56-140,000. Further, the experimental manipulation of vortex streets according to the stability analysis mentioned above is proved to be very effective.展开更多
The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated, and a wake oscillator model for the dynamic response prediction is proposed. ...The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated, and a wake oscillator model for the dynamic response prediction is proposed. An approach is applied to calibrate the empirical parameters in the present model; the numerical and experimental results are compared to validate the proposed model. It can be found that the present prediction model is accurate and sufficiently simple to be easily applied in practice.展开更多
This study investigated numerically the characteristics of laminar flow around two identical circular cylinders placed in tandem, with slits of the same width through their respective axis. The center to center distan...This study investigated numerically the characteristics of laminar flow around two identical circular cylinders placed in tandem, with slits of the same width through their respective axis. The center to center distance between the cylinders and the slit orientation were varied to study their effects on the flow structure, lift and drag, and vortex shedding characteristics. It was found that three flow regimes could be distinguished, the transitions between which could be indicated by the sudden changes in drag and lift. Asymmetrically, configured slits destabilized the stagnant region between cylinders;whereas in-line slits connect the two cylinders to act as a single elongated bluff body, even at large cylinder separation, by stabilizing the stagnant region in between. These in turn strongly modified the transition between flow regimes. Vortex shedding was also strongly influenced by both slit configuration and cylinder separation.展开更多
This article proposes a new wake oscillator model for vortex induced vibrations of an elastically supported rigid circular cylinder in a uniform current. The near wake dynamics related with the fluctuating nature of v...This article proposes a new wake oscillator model for vortex induced vibrations of an elastically supported rigid circular cylinder in a uniform current. The near wake dynamics related with the fluctuating nature of vortex shedding is modeled based on the classical van der Pol equation, combined with the equation for the oscillatory motion of the body. An appropriate approach is developed to estimate the empirical parameters in the wake oscillator model. The present predicted results are compared to the experimental data and previous wake oscillator model results. Good agreement with experimental results is found.展开更多
The flow behind a three-dimensional rotationally oscillating circular cylinder was studied by a numerical method. The computations were performed at a Reynolds number of 260, which is at a level that the flow wake has...The flow behind a three-dimensional rotationally oscillating circular cylinder was studied by a numerical method. The computations were performed at a Reynolds number of 260, which is at a level that the flow wake has developed into a three-dimensional state called Mode-B. The purpose of this paper is to examine the influence of various rotational amplitudes (0.1-0.7) on the wake instability of the flow, while the oscillation frequency is fixed to the value of that measured in the wake of a stationary cylinder. The results show that the rotation with sufficiently high amplitude brings the flow back to its nominal two-dimensional state. Moreover, it is found that the value of the time-averaged drag and the RMS value of the lift are larger than those of a stationary circular cylinder.展开更多
Transition waves and interactions between two kinds of instability-vortex shedding and transition wave in the near wake of a circular cylinder in the Reynolds number range 3 000-10 000 are studied by a domain decompos...Transition waves and interactions between two kinds of instability-vortex shedding and transition wave in the near wake of a circular cylinder in the Reynolds number range 3 000-10 000 are studied by a domain decomposition hybrid numerical method.Based on high resolution power spectral analyses for velocity new results on the Reynolds-number dependence of the transition wave frequency,i.e.ft/fa^Re0.87 are obtained.The new predictions are in good agreement with the experimental results of Wei and Smith but different from Braza's prediction and some early experimental results ft/fa-Re0.5 given by Bloor et al.The multi-interactions between two kinds of vortex are clearly visualized numerically.The strong nonlinear interactions between the two independent frequencies (ft,fa) leading to spectra broadening to form the coupling mfs±nft are predicted and analyzed numerically,and the characteristics of the transition are described.Longitudinal variations of the transition wave and its coupling are reported.Detailed mechanism of the flow transition in the near wake before occurrence of the three-dimensional evolution is provided.展开更多
The purpose of this study is to investigate the characteristics of aerodynamic sound generated from wake interference of circular cylinder and airfoil vane located in tandem and to clarify the generation mechanism of ...The purpose of this study is to investigate the characteristics of aerodynamic sound generated from wake interference of circular cylinder and airfoil vane located in tandem and to clarify the generation mechanism of the sound source with discrete frequency. The effects of the interval between the cylinder and the airfoil on the characteristics of aerodynamic sound are investigated by acoustic measurement, flow visualization and exploration test of sound source. The relation between the flow field and the sound field with discrete frequency noise(DFN) is shown, and then it is found that the downstream airfoil works as the sound source of DFN, which has the frequency of vortex shedding from the upstream cylinder, when the interval of two bodies is longer than a critical distance.展开更多
In our previous study, the effects of the interval between the cylinder and the airfoil on the aerodynamic sound were investigated and compared with the cases of single circular and single airfoil. In this study, the ...In our previous study, the effects of the interval between the cylinder and the airfoil on the aerodynamic sound were investigated and compared with the cases of single circular and single airfoil. In this study, the effects of the attack angle of the airfoil located downstream on the characteristics of aerodynamic sound and the wake structure are investigated at a given interval between the cylinder and the airfoil. It is found that the sound pressure level of DFN and the peak frequency decrease with increasing attack angle of airfoil because of the diffusive wake structure due to the increased back pressure of circular cylinder, which is caused by the blocking effect of airfoil. It is shown that the sound sources are corresponded to the attack points of shedding vortex form the upstream circular cylinder to the downstream airfoil. We conclude that the pressure fluctuation at the airfoil surface effects on the sound pressure level, from the flow visualizations and the exploration test of sound source.展开更多
Control of flow around a circular cylinder by synthetic jets has been experimentally investigated in a water tunnel with particle image velocimetry(PIV) technique.The synthetic jets are positioned at both the front an...Control of flow around a circular cylinder by synthetic jets has been experimentally investigated in a water tunnel with particle image velocimetry(PIV) technique.The synthetic jets are positioned at both the front and rear stagnation points.With power spectrum analysis,proper orthogonal decomposition(POD) method and other techniques for data processing,particular attention is paid to the control of vortical structures around the circular cylinder,in which the excitation frequency f e is one to three times of the natural frequency f0 and the cylinder Reynolds number and the excitation amplitude are fixed.The influenced-scope of the synthetic jet enlarges as the excitation frequency increases,and thus the synthetic jet dominates the global flow field gradually.For the natural case and the control case at fe/f0=1,the distributions of the first two POD modes and the power spectra for their POD coefficients all exhibit the characteristics of the natural shedding with antisymmetric mode.For fe/f0=2 and fe/f0=3,the variations in the third and fourth POD modes and the corresponding power spectra indicate that the wake vortex shedding mode changes and the dominant frequency becomes the excitation frequency.For fe/f0=2,the wake vortex sheds downstream with either the antisymmetric or the symmetric mode;for fe/f0=3,the synthetic jet vortex pair interacts with the near wake shear layers from both sides to induce a pair of the symmetric wake vortices,which is gradually converted into an antisymmetric mode when shedding downstream.展开更多
The dispersion of particles emitted from the surface of a circular cylinder placed in a gas flow at the Reynolds number of 200 000 is numerically investigated using the discrete vortex method coupled with a Lagrangian...The dispersion of particles emitted from the surface of a circular cylinder placed in a gas flow at the Reynolds number of 200 000 is numerically investigated using the discrete vortex method coupled with a Lagrangian approach for solid particle tracking. The wake vortex patterns, the temporal-spatial distributions and trajectories as well as the dispersion functions for particles with various Stokes numbers(St) ranging from 0.001 to 1.0 are obtained. The numerical results reveal that:(1) Solid particles on the cylinder surface are picked up and then transported away from the cylinder by the wake vortex flow.(2) Solid particles emitted from the cylinder surface always follow the vortices in the cylinder wake, and the response of particles to wake vortices is directly related to their Stokes numbers(particles with St= 0.001, 0.0038, 0.01 can distribute both in the vortex core and around the vortex periphery, whereas those with St= 0.1, 1.0 can not enter the vortex core and congregate mainly around the vortex periphery).(3) The particles move in rolling state in the wake region, and the dispersion intensity of particles in the lateral direction decreases remarkably as the Stokes number of particles is increased from 0.001 to 1.0.展开更多
文摘In the present paper,the spatio-temporal evolution of vorticity in the first wake instability,i.e.,(pure)mode A,is investigated in order to understand the wake vortex dynamics and sign relationships among vorticity components.Direct numerical simulation(DNS)for the flow past a circular cylinder is performed,typically at a Reynolds number of 200,in the three-dimensional(3-D)wake transition.According to characteristics of time histories of fluid forces,three different stages are identified as the computational transition,the initial stage and fully developed wake.In the second initial stage,the original two-dimensional spanwise vortices become obviously three-dimensional associated with the streamwise or vertical vorticity intensified up to about 0.1.As a matter of fact,these additional vorticities,caused by the intrinsic 3-D instability,are already generated firstly on cylinder surfaces early in the computational transition,indicating that the three-dimensionality appeared early near the cylinder.The evolution of additional components of vorticity with features the same as mode A shows that(pure)mode A can be already formed in the late computational transition.Through careful analysis of the vorticity field on the front surface,in the shear layers and near wake at typical times,two sign laws are obtained.They illustrate intrinsic relationships among three vorticity components,irrelevant to the wavelength or Fourier mode and Reynolds number in(pure)mode A.Most importantly,the origin of streamwise vortices is found and explained by a new physical mechanism based on the theory of vortex-induced vortex.As a result,the whole process of formation and shedding vortices with these vorticities is firstly and completely illustrated.Other characteristics are presented in detail.
文摘The near wake of a circular cylinder in linearly stratified flows of finite depth was experimentally investigated by means of flow visualization and measurements of vortex shedding frequencies, at Reynolds numbers 3.5 × 103-1.2 × 104 and stratification parameters kd 0-2.0. The non-dimensional parameter kd is defined as kd = Nd/U, where N is the Brunt-Vaisala frequency, d, the diameter of the cylinder, and U, the approaching flow velocity. The study demonstrates that as kd increases from zero, the vortex shedding from a circular cylinder progressively strengthens, while the Strouhal number gradually becomes lower than that for homogeneous flow. This phenomenon can be explained by the effect of the increasingly stable stratification which enhances the two-dimensionality of the near-wake flow of the circular cylinder;the enhanced two-dimensionality of the flow strengthens the roll-up of the separated shear layer. Above a certain value of kd, however, vortex formation and shedding are strongly suppressed and the Strouhal number rises sharply. This observation is attributable to the development of stationary lee waves downstream of the circular cylinder because the lee waves strongly suppress vertical fluid motions.
文摘The study on the formation of vortex streets behind stationary circular cylinders is of substantial sense in engineering, since vortex streets play the leading role in introduction of vibration, generation of noise and wake instability, etc.. In the present paper, the Orr-Sommerfeld equation combined with measured velocity profiles is used to investigate the type of instability behind stationary cylinders, which determines the mechanism of vortex formation. The numerical calculations for Reynolds numbers of 56-140 000 imply that there is a range around the end of the dead water region in cylinder wakes where the instability belongs to the absolute type. Beyond the range, the flows show to be of the convective type. On the other hand, the flows tend to be of the convective instability when Reynolds number is below the subcritical value of forming vortex streets. All of the correspondent Strouhal numbers agree with experimental data very well. The formation of vortex streets behind stationary cylinders is proposed to be caused by an absolute instability in the near wake. There is always an absolute instability region for the Reynolds numbers from 56-140,000. Further, the experimental manipulation of vortex streets according to the stability analysis mentioned above is proved to be very effective.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(SRFDP,Grant No. 20100032120047)State Key Laboratory of Ocean Engineering of Shanghai Jiao Tong University (Grant No.1104)the National Natural Science Foundation of China (Grant No. 51209161)
文摘The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated, and a wake oscillator model for the dynamic response prediction is proposed. An approach is applied to calibrate the empirical parameters in the present model; the numerical and experimental results are compared to validate the proposed model. It can be found that the present prediction model is accurate and sufficiently simple to be easily applied in practice.
基金Project(51576213) supported by the National Natural Science Foundation of ChinaProject(2017JJ1031) supported by Hunan Provincial Natural Science Foundation of China+1 种基金Project(CSUZC201921) supported by the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,ChinaProject(2019zzts536) supported by the Fundamental Research Funds for the Central Universities,China
文摘This study investigated numerically the characteristics of laminar flow around two identical circular cylinders placed in tandem, with slits of the same width through their respective axis. The center to center distance between the cylinders and the slit orientation were varied to study their effects on the flow structure, lift and drag, and vortex shedding characteristics. It was found that three flow regimes could be distinguished, the transitions between which could be indicated by the sudden changes in drag and lift. Asymmetrically, configured slits destabilized the stagnant region between cylinders;whereas in-line slits connect the two cylinders to act as a single elongated bluff body, even at large cylinder separation, by stabilizing the stagnant region in between. These in turn strongly modified the transition between flow regimes. Vortex shedding was also strongly influenced by both slit configuration and cylinder separation.
基金supported by the National High Technology Research and Development Program of China(863 Program,Grant No.2006AA09Z350)the National Natural Science Foundation of China(Grant No.10702073)the Knowledge Innovation Program of Chinese Academy of Sciences(Grant No.KJCX2-YW-L02)
文摘This article proposes a new wake oscillator model for vortex induced vibrations of an elastically supported rigid circular cylinder in a uniform current. The near wake dynamics related with the fluctuating nature of vortex shedding is modeled based on the classical van der Pol equation, combined with the equation for the oscillatory motion of the body. An appropriate approach is developed to estimate the empirical parameters in the wake oscillator model. The present predicted results are compared to the experimental data and previous wake oscillator model results. Good agreement with experimental results is found.
基金the National Natural Science Foundation of China (Grant No. 10472104)the National Basic Research Program of China (973 Program, Grant No.2006CB705400).
文摘The flow behind a three-dimensional rotationally oscillating circular cylinder was studied by a numerical method. The computations were performed at a Reynolds number of 260, which is at a level that the flow wake has developed into a three-dimensional state called Mode-B. The purpose of this paper is to examine the influence of various rotational amplitudes (0.1-0.7) on the wake instability of the flow, while the oscillation frequency is fixed to the value of that measured in the wake of a stationary cylinder. The results show that the rotation with sufficiently high amplitude brings the flow back to its nominal two-dimensional state. Moreover, it is found that the value of the time-averaged drag and the RMS value of the lift are larger than those of a stationary circular cylinder.
基金Project supported by the National Natural Science Foundation of China, the LNM of Institute of Mechanics, and partially by the National Basic Research Project.
文摘Transition waves and interactions between two kinds of instability-vortex shedding and transition wave in the near wake of a circular cylinder in the Reynolds number range 3 000-10 000 are studied by a domain decomposition hybrid numerical method.Based on high resolution power spectral analyses for velocity new results on the Reynolds-number dependence of the transition wave frequency,i.e.ft/fa^Re0.87 are obtained.The new predictions are in good agreement with the experimental results of Wei and Smith but different from Braza's prediction and some early experimental results ft/fa-Re0.5 given by Bloor et al.The multi-interactions between two kinds of vortex are clearly visualized numerically.The strong nonlinear interactions between the two independent frequencies (ft,fa) leading to spectra broadening to form the coupling mfs±nft are predicted and analyzed numerically,and the characteristics of the transition are described.Longitudinal variations of the transition wave and its coupling are reported.Detailed mechanism of the flow transition in the near wake before occurrence of the three-dimensional evolution is provided.
文摘The purpose of this study is to investigate the characteristics of aerodynamic sound generated from wake interference of circular cylinder and airfoil vane located in tandem and to clarify the generation mechanism of the sound source with discrete frequency. The effects of the interval between the cylinder and the airfoil on the characteristics of aerodynamic sound are investigated by acoustic measurement, flow visualization and exploration test of sound source. The relation between the flow field and the sound field with discrete frequency noise(DFN) is shown, and then it is found that the downstream airfoil works as the sound source of DFN, which has the frequency of vortex shedding from the upstream cylinder, when the interval of two bodies is longer than a critical distance.
文摘In our previous study, the effects of the interval between the cylinder and the airfoil on the aerodynamic sound were investigated and compared with the cases of single circular and single airfoil. In this study, the effects of the attack angle of the airfoil located downstream on the characteristics of aerodynamic sound and the wake structure are investigated at a given interval between the cylinder and the airfoil. It is found that the sound pressure level of DFN and the peak frequency decrease with increasing attack angle of airfoil because of the diffusive wake structure due to the increased back pressure of circular cylinder, which is caused by the blocking effect of airfoil. It is shown that the sound sources are corresponded to the attack points of shedding vortex form the upstream circular cylinder to the downstream airfoil. We conclude that the pressure fluctuation at the airfoil surface effects on the sound pressure level, from the flow visualizations and the exploration test of sound source.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11202015 and 10832001)
文摘Control of flow around a circular cylinder by synthetic jets has been experimentally investigated in a water tunnel with particle image velocimetry(PIV) technique.The synthetic jets are positioned at both the front and rear stagnation points.With power spectrum analysis,proper orthogonal decomposition(POD) method and other techniques for data processing,particular attention is paid to the control of vortical structures around the circular cylinder,in which the excitation frequency f e is one to three times of the natural frequency f0 and the cylinder Reynolds number and the excitation amplitude are fixed.The influenced-scope of the synthetic jet enlarges as the excitation frequency increases,and thus the synthetic jet dominates the global flow field gradually.For the natural case and the control case at fe/f0=1,the distributions of the first two POD modes and the power spectra for their POD coefficients all exhibit the characteristics of the natural shedding with antisymmetric mode.For fe/f0=2 and fe/f0=3,the variations in the third and fourth POD modes and the corresponding power spectra indicate that the wake vortex shedding mode changes and the dominant frequency becomes the excitation frequency.For fe/f0=2,the wake vortex sheds downstream with either the antisymmetric or the symmetric mode;for fe/f0=3,the synthetic jet vortex pair interacts with the near wake shear layers from both sides to induce a pair of the symmetric wake vortices,which is gradually converted into an antisymmetric mode when shedding downstream.
基金supported by the Innovation Program of Shanghai Municipal Education Commission(Grant No.10ZZ95)the Leading Academic Discipline Project of Shanghai Municipal Education Commission(Grant No.J50502)
文摘The dispersion of particles emitted from the surface of a circular cylinder placed in a gas flow at the Reynolds number of 200 000 is numerically investigated using the discrete vortex method coupled with a Lagrangian approach for solid particle tracking. The wake vortex patterns, the temporal-spatial distributions and trajectories as well as the dispersion functions for particles with various Stokes numbers(St) ranging from 0.001 to 1.0 are obtained. The numerical results reveal that:(1) Solid particles on the cylinder surface are picked up and then transported away from the cylinder by the wake vortex flow.(2) Solid particles emitted from the cylinder surface always follow the vortices in the cylinder wake, and the response of particles to wake vortices is directly related to their Stokes numbers(particles with St= 0.001, 0.0038, 0.01 can distribute both in the vortex core and around the vortex periphery, whereas those with St= 0.1, 1.0 can not enter the vortex core and congregate mainly around the vortex periphery).(3) The particles move in rolling state in the wake region, and the dispersion intensity of particles in the lateral direction decreases remarkably as the Stokes number of particles is increased from 0.001 to 1.0.