The pursuit of high-performance is worth considerable effort in catalysis for energy efficiency and environmental sustainability. To develop redox catalysts with superior performance for soot combustion, a series of M...The pursuit of high-performance is worth considerable effort in catalysis for energy efficiency and environmental sustainability. To develop redox catalysts with superior performance for soot combustion, a series of Mn_(x)Co_(y) oxides were synthesized using MgO template substitution.This method greatly improves the preparation and catalytic efficiency and is more in line with the current theme of green catalysts and sustainable development. The resulting Mn_(1)Co_(2.3) has a strong activation capability of gaseous oxygen due to a high concentration of Co^(3+) and Mn^(3+). The Mn doping enhanced the intrinsic activity by prompting oxygen vacancy formation and gaseous oxygen adsorption. The nanosheet morphology with abundant mesoporous significantly increased the solid–solid contact efficiency and improved the adsorption capability of gaseous reactants. The novel design of Mn_(1)Co_(2.3)oxide enhanced its catalytic performance through a synergistic effect of Mn doping and the porous nanosheet morphology, showing significant potential for the preparation of high-performance soot combustion catalysts.展开更多
The automotive industry is seeking new concepts for a continuously variabletransmission (CVT) in the driveline. One possible solution for a CVT design is half toroidaltraction drive, providing a high torque capacity w...The automotive industry is seeking new concepts for a continuously variabletransmission (CVT) in the driveline. One possible solution for a CVT design is half toroidaltraction drive, providing a high torque capacity with quick ratio change. An analytical study on thecontact points of the half toroidal CVT has been detailed. The shapes of the contact areas amongthe input disk, power roller and output disk are considered ellipses. Mathematical equations forestimating the torque capacity, power loss due to spin action, and contact efficiency of theelliptical contacts of the half toroidal CVT are formulated and expressed in the form of integralswhich can be readily evaluated by numerical scheme. The contact efficiency calculations of the halftoroidal CVT have been developed for the proper spin point locations under the effect of systemparameters. Numerical results are presented hi graphical forms for considered parameters, which canhelp the designer to select the proper system parameters to minimize the undesirable spin effects.展开更多
The friction interface matching plays a deterministic role in the motor efficiency,and the microcosmic contact status of friction interface should be investigated to improve the ultrasonic motor performance.The main p...The friction interface matching plays a deterministic role in the motor efficiency,and the microcosmic contact status of friction interface should be investigated to improve the ultrasonic motor performance.The main purpose is to improve the effective output power of ultrasonic motor.Hence,one studies the contact condition of the friction interface of the ultrasonic motor,analyzes the micro condition of contact interface through finite element analysis,optimizes unreasonable structures,and compares the two different-structure ultrasonic motors through experiments.The results reflect the necessity of optimization.After optimization,the stator and rotor deform after pre-pressure and the contact interface of them full contact theoretically.When reaching heat balance the effective output of the motor is 37%,and the average effective output efficiency is 2.384 times higher than that of the unoptimized.It can be seen that the total consumption of the ultrasonic motor system decreases significantly.Therefore,when using in certain system the consumption taken from the system will decreases largely,especially in the system with a strict consumption control.展开更多
In wrist watches gear drives with undercut pinions are used. Those pinions have got a tooth number as few as 5—7. The efficiency of such gear drives is important because of the limited energy supply. The mean efficie...In wrist watches gear drives with undercut pinions are used. Those pinions have got a tooth number as few as 5—7. The efficiency of such gear drives is important because of the limited energy supply. The mean efficiency of gear drives can be expressed as E<sub>m</sub>=1/(φ<sub>2</sub>-φ<sub>1</sub>)(integral from φ<sub>1</sub> to φ<sub>2</sub>(E(φ)dφ)) in which <sup>0</sup><sub>1</sub>, <sup><</sup>sub>2</sub> are the approach angle and the recess angle respectively. In the discussion we assume that the friction coefficient between the two tooth flanks is constant because the sliding speed is relatively low in wrist watches and the main purpose is to find out the relation between gear parameters and its efficiency rather than to calculate the exact value of the efficiency. In normal conditions <sup>o</sup><sub>1</sub> and <sup>o</sup><sub>2</sub> can be found from the gear geometry without much difficulty. However when the pinion is an undercut one we have to first find the forming diameter where the involute profile starts. In this paper equations for the computation of the efficiency and the contact ratio of those gear drives are discussed.展开更多
为研究辊形电磁调控技术(roll profile electromagnetic control technology,RPECT)的热力胀形行为,采用有限元方法分析了不同电流密度及频率下综合辊凸度、热力贡献辊凸度以及力凸度占比等随接触区热量的变化规律,探究了接触区热量与...为研究辊形电磁调控技术(roll profile electromagnetic control technology,RPECT)的热力胀形行为,采用有限元方法分析了不同电流密度及频率下综合辊凸度、热力贡献辊凸度以及力凸度占比等随接触区热量的变化规律,探究了接触区热量与热力胀形能力的映射关系及其成立条件.结果表明,在接触区热量的中低取值范围内,同一接触区热量所对应的热力调控能力不会受磁参数影响,故提出将接触区热量作为输入参数与调控能力之间桥梁的RPECT高效控制策略.该策略通过提升磁参数来快速达到接触区的目标温升效果,进而获取目标调控能力.以20μm的辊缝凸度需求为例,经原始与高效控制策略间的对比发现,新策略的调控时间可有效地缩短至原调控时间的19.57%.展开更多
The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further cause...The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further causes improper lubrication. The investigation of the air phase flow inside the bearing cavity is essential for the optimization of the oil-air two-phase lubrication method. With the revolutionary reference frame describing the bearing motion, a highly precise air phase flow model inside the angular contact ball bearing cavity was build up. Comprehensive factors such as bearing revolution, ball rotation, and cage structure were considered to investigate the influences on the air phase flow and heat transfer efficiency. The aerodynamic noise was also analyzed. The result shows that the ball spinning leads to the pressure rise and uneven pressure distribution. The air phase velocity, pressure and cage heat transfer efficiency increase as the revolving speed increases. The operating noise is largely due to the impact of the high speed external flow on the bearing. When the center of the oil-air outlet fixes near the inner ring, the aerodynamic noise is reduced. The position near the inner ring on the bigger axial side is the ideal position to fix the lubricating device for the angular contact ball bearing.展开更多
To meet the requirements for fast and efficient gas-solid separation at the outlet of a gas-solid concurrent downflow fluidized bed(downer),a new horizontal gas-solid rapid separator was designed based on the joint ac...To meet the requirements for fast and efficient gas-solid separation at the outlet of a gas-solid concurrent downflow fluidized bed(downer),a new horizontal gas-solid rapid separator was designed based on the joint action of centrifugal and inertial forces.Under the same experimental conditions,a fluid catalytic cracking(FCC)catalyst was used as the material(with a particle density of 1500 kg/m3 and a mean particle size of 45.8μm)to experimentally investigate the effects of the insertion length of gas outlet pipe,the bypass cylinder,the gas outlet direction,and the secondary separation structure on the separator performance.The results showed that with an inlet gas flow rate of 14.5 m/s and a gas phase solid content of 60―835 g/m3,the downer system achieved a gas-solid separation efficiency of above 99.5%,with the separator’s pressure drop within 1846 Pa(when the separator included a bypass cylinder and a secondary separation structure with a proper insertion length of gas outlet pipe).展开更多
A new gas-solid separator dedicated to heavy-oil fast pyrolysis process incorporating inertial and centrifugal separation was designed. Gas and typical fluid catalytic cracking (FCC) catalyst particles (with a dens...A new gas-solid separator dedicated to heavy-oil fast pyrolysis process incorporating inertial and centrifugal separation was designed. Gas and typical fluid catalytic cracking (FCC) catalyst particles (with a density of 1500 kg/m3, and a mean diameter of 45.81 p.m) were used in the study. The inlet gas velocity was kept constant at 13.36 m/s, while the solid loading at the inlet ranged from 0 to 700 g/m3. When the exhaust pipe opening was provided with two narrow-width slots near the inlet without baffles, the solid collection efficiency increased with an increasing solid loading at the inlet and was close to 95% along with a decreasing pressure drop. After increasing the secondary separation structure, the separation efficiency greatly improved. By adjusting the diameter of the secondary exhaust pipe, the separation efficiency and pressure drop could be balanced. Under the experimental conditions, when the diameter of the second exhaust pipe was equal to d=100 mm, the pressure drop was lower than 1400 Pa while the separation efficiency could exceed 99.50%; and when the diameter was equal to d=120 mm, the pressure drop was less than 700 Pa, with the separation efficiency reaching over 99.00%.展开更多
ZnTe/ZnTe∶Cu layer is used as a complex back contact. The parameters of CdTe solar cells with and without the complex back contacts are compared. The effects of un-doped layer thickness, doped concentration and post-...ZnTe/ZnTe∶Cu layer is used as a complex back contact. The parameters of CdTe solar cells with and without the complex back contacts are compared. The effects of un-doped layer thickness, doped concentration and post-deposition annealing temperature of the complex layer on solar cells performance are investigated.The results show that ZnTe/ZnTe∶Cu layer can improve back contacts and largely increase the conversion efficiency of CdTe solar cells. Un-doped layer and post-deposition annealing of high temperature can increase open voltage. Using the complex back contact, a small CdTe cell with fill factor of 73.14% and conversion efficiency of 12.93% is obtained.展开更多
Recently, high heat density has become a problem in electronic devices. Therefore, high heat-transfer efficiency is required in copper heat exchangers. Improvement ofwettability is reported to improve the heat-transfe...Recently, high heat density has become a problem in electronic devices. Therefore, high heat-transfer efficiency is required in copper heat exchangers. Improvement ofwettability is reported to improve the heat-transfer efficiency. In previous studies, copper oxide layer improves the wettability. In this study, we focus on a copper oxide layer produced under warm conditions (from 200 to 300 ℃), which are suitable oxidation conditions for improving wettability. Experimental results showed that the surface of the specimens was covered by the oxidation layer and took on a black color. Furthermore, the wettability was improved by the warm copper oxide layer. While, the surface roughness was approximately constant to each warm oxidized specimen. Whereat, the warm oxide layer was observed by SEM (sanning electron microscope). The results from SEM observations showed that the warm copper oxide layer consisted of stacks and combinations of nanoscopic warm oxidation particles. Thus, the warm oxidation layer has nanoscopic surface asperities. It is seemed that these nanoscopic asperities improved the wettability.展开更多
基金supported by the top talent program of Henan Agricultural University[grant numbers 30501029].
文摘The pursuit of high-performance is worth considerable effort in catalysis for energy efficiency and environmental sustainability. To develop redox catalysts with superior performance for soot combustion, a series of Mn_(x)Co_(y) oxides were synthesized using MgO template substitution.This method greatly improves the preparation and catalytic efficiency and is more in line with the current theme of green catalysts and sustainable development. The resulting Mn_(1)Co_(2.3) has a strong activation capability of gaseous oxygen due to a high concentration of Co^(3+) and Mn^(3+). The Mn doping enhanced the intrinsic activity by prompting oxygen vacancy formation and gaseous oxygen adsorption. The nanosheet morphology with abundant mesoporous significantly increased the solid–solid contact efficiency and improved the adsorption capability of gaseous reactants. The novel design of Mn_(1)Co_(2.3)oxide enhanced its catalytic performance through a synergistic effect of Mn doping and the porous nanosheet morphology, showing significant potential for the preparation of high-performance soot combustion catalysts.
基金This project is supported by Ford National Natural Science Foundation of China (No.50122151).
文摘The automotive industry is seeking new concepts for a continuously variabletransmission (CVT) in the driveline. One possible solution for a CVT design is half toroidaltraction drive, providing a high torque capacity with quick ratio change. An analytical study on thecontact points of the half toroidal CVT has been detailed. The shapes of the contact areas amongthe input disk, power roller and output disk are considered ellipses. Mathematical equations forestimating the torque capacity, power loss due to spin action, and contact efficiency of theelliptical contacts of the half toroidal CVT are formulated and expressed in the form of integralswhich can be readily evaluated by numerical scheme. The contact efficiency calculations of the halftoroidal CVT have been developed for the proper spin point locations under the effect of systemparameters. Numerical results are presented hi graphical forms for considered parameters, which canhelp the designer to select the proper system parameters to minimize the undesirable spin effects.
文摘The friction interface matching plays a deterministic role in the motor efficiency,and the microcosmic contact status of friction interface should be investigated to improve the ultrasonic motor performance.The main purpose is to improve the effective output power of ultrasonic motor.Hence,one studies the contact condition of the friction interface of the ultrasonic motor,analyzes the micro condition of contact interface through finite element analysis,optimizes unreasonable structures,and compares the two different-structure ultrasonic motors through experiments.The results reflect the necessity of optimization.After optimization,the stator and rotor deform after pre-pressure and the contact interface of them full contact theoretically.When reaching heat balance the effective output of the motor is 37%,and the average effective output efficiency is 2.384 times higher than that of the unoptimized.It can be seen that the total consumption of the ultrasonic motor system decreases significantly.Therefore,when using in certain system the consumption taken from the system will decreases largely,especially in the system with a strict consumption control.
文摘In wrist watches gear drives with undercut pinions are used. Those pinions have got a tooth number as few as 5—7. The efficiency of such gear drives is important because of the limited energy supply. The mean efficiency of gear drives can be expressed as E<sub>m</sub>=1/(φ<sub>2</sub>-φ<sub>1</sub>)(integral from φ<sub>1</sub> to φ<sub>2</sub>(E(φ)dφ)) in which <sup>0</sup><sub>1</sub>, <sup><</sup>sub>2</sub> are the approach angle and the recess angle respectively. In the discussion we assume that the friction coefficient between the two tooth flanks is constant because the sliding speed is relatively low in wrist watches and the main purpose is to find out the relation between gear parameters and its efficiency rather than to calculate the exact value of the efficiency. In normal conditions <sup>o</sup><sub>1</sub> and <sup>o</sup><sub>2</sub> can be found from the gear geometry without much difficulty. However when the pinion is an undercut one we have to first find the forming diameter where the involute profile starts. In this paper equations for the computation of the efficiency and the contact ratio of those gear drives are discussed.
文摘为研究辊形电磁调控技术(roll profile electromagnetic control technology,RPECT)的热力胀形行为,采用有限元方法分析了不同电流密度及频率下综合辊凸度、热力贡献辊凸度以及力凸度占比等随接触区热量的变化规律,探究了接触区热量与热力胀形能力的映射关系及其成立条件.结果表明,在接触区热量的中低取值范围内,同一接触区热量所对应的热力调控能力不会受磁参数影响,故提出将接触区热量作为输入参数与调控能力之间桥梁的RPECT高效控制策略.该策略通过提升磁参数来快速达到接触区的目标温升效果,进而获取目标调控能力.以20μm的辊缝凸度需求为例,经原始与高效控制策略间的对比发现,新策略的调控时间可有效地缩短至原调控时间的19.57%.
基金Project(2011CB706606) supported by the National Basic Research of ChinaProject(51405375) supported by the National Natural Science Foundation of China
文摘The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further causes improper lubrication. The investigation of the air phase flow inside the bearing cavity is essential for the optimization of the oil-air two-phase lubrication method. With the revolutionary reference frame describing the bearing motion, a highly precise air phase flow model inside the angular contact ball bearing cavity was build up. Comprehensive factors such as bearing revolution, ball rotation, and cage structure were considered to investigate the influences on the air phase flow and heat transfer efficiency. The aerodynamic noise was also analyzed. The result shows that the ball spinning leads to the pressure rise and uneven pressure distribution. The air phase velocity, pressure and cage heat transfer efficiency increase as the revolving speed increases. The operating noise is largely due to the impact of the high speed external flow on the bearing. When the center of the oil-air outlet fixes near the inner ring, the aerodynamic noise is reduced. The position near the inner ring on the bigger axial side is the ideal position to fix the lubricating device for the angular contact ball bearing.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(21576294 and 21706287).
文摘To meet the requirements for fast and efficient gas-solid separation at the outlet of a gas-solid concurrent downflow fluidized bed(downer),a new horizontal gas-solid rapid separator was designed based on the joint action of centrifugal and inertial forces.Under the same experimental conditions,a fluid catalytic cracking(FCC)catalyst was used as the material(with a particle density of 1500 kg/m3 and a mean particle size of 45.8μm)to experimentally investigate the effects of the insertion length of gas outlet pipe,the bypass cylinder,the gas outlet direction,and the secondary separation structure on the separator performance.The results showed that with an inlet gas flow rate of 14.5 m/s and a gas phase solid content of 60―835 g/m3,the downer system achieved a gas-solid separation efficiency of above 99.5%,with the separator’s pressure drop within 1846 Pa(when the separator included a bypass cylinder and a secondary separation structure with a proper insertion length of gas outlet pipe).
文摘A new gas-solid separator dedicated to heavy-oil fast pyrolysis process incorporating inertial and centrifugal separation was designed. Gas and typical fluid catalytic cracking (FCC) catalyst particles (with a density of 1500 kg/m3, and a mean diameter of 45.81 p.m) were used in the study. The inlet gas velocity was kept constant at 13.36 m/s, while the solid loading at the inlet ranged from 0 to 700 g/m3. When the exhaust pipe opening was provided with two narrow-width slots near the inlet without baffles, the solid collection efficiency increased with an increasing solid loading at the inlet and was close to 95% along with a decreasing pressure drop. After increasing the secondary separation structure, the separation efficiency greatly improved. By adjusting the diameter of the secondary exhaust pipe, the separation efficiency and pressure drop could be balanced. Under the experimental conditions, when the diameter of the second exhaust pipe was equal to d=100 mm, the pressure drop was lower than 1400 Pa while the separation efficiency could exceed 99.50%; and when the diameter was equal to d=120 mm, the pressure drop was less than 700 Pa, with the separation efficiency reaching over 99.00%.
文摘ZnTe/ZnTe∶Cu layer is used as a complex back contact. The parameters of CdTe solar cells with and without the complex back contacts are compared. The effects of un-doped layer thickness, doped concentration and post-deposition annealing temperature of the complex layer on solar cells performance are investigated.The results show that ZnTe/ZnTe∶Cu layer can improve back contacts and largely increase the conversion efficiency of CdTe solar cells. Un-doped layer and post-deposition annealing of high temperature can increase open voltage. Using the complex back contact, a small CdTe cell with fill factor of 73.14% and conversion efficiency of 12.93% is obtained.
文摘Recently, high heat density has become a problem in electronic devices. Therefore, high heat-transfer efficiency is required in copper heat exchangers. Improvement ofwettability is reported to improve the heat-transfer efficiency. In previous studies, copper oxide layer improves the wettability. In this study, we focus on a copper oxide layer produced under warm conditions (from 200 to 300 ℃), which are suitable oxidation conditions for improving wettability. Experimental results showed that the surface of the specimens was covered by the oxidation layer and took on a black color. Furthermore, the wettability was improved by the warm copper oxide layer. While, the surface roughness was approximately constant to each warm oxidized specimen. Whereat, the warm oxide layer was observed by SEM (sanning electron microscope). The results from SEM observations showed that the warm copper oxide layer consisted of stacks and combinations of nanoscopic warm oxidation particles. Thus, the warm oxidation layer has nanoscopic surface asperities. It is seemed that these nanoscopic asperities improved the wettability.