The mechanism involved in the phase transformation process of pyrolusite (MnO_(2)) during roasting in a reducing atmosphere was systematically elucidated in this study,with the aim of effectively using low-grade compl...The mechanism involved in the phase transformation process of pyrolusite (MnO_(2)) during roasting in a reducing atmosphere was systematically elucidated in this study,with the aim of effectively using low-grade complex manganese ore resources.According to single-factor experiment results,the roasted product with a divalent manganese (Mn^(2+)) distribution rate of 95.30% was obtained at a roasting time of 25 min,a roasting temperature of 700℃,a CO concentration of 20at%,and a total gas volume of 500 mL·min^(-1),in which the manganese was mainly in the form of manganosite (MnO).Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core Thermodynamic calculations,X-ray photoelectron spectroscopy,and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO phase by phase,and the reduction of manganese oxides in each valence state proceeded simultaneously.展开更多
Cu catalysts can convert CO_(2) through an electrochemical reduction reaction into a variety of useful carbon-based products.However,this capability provides an obstacle to increasing the selectivity for a single prod...Cu catalysts can convert CO_(2) through an electrochemical reduction reaction into a variety of useful carbon-based products.However,this capability provides an obstacle to increasing the selectivity for a single product.Herein,we report a simple fabrication method for a Cu-Pd alloy catalyst for use in a membrane electrode assembly(MEA)-based CO_(2) electrolyzer for the electrochemical CO_(2) reduction reaction(ECRR)with high selectivity for CO production.When the composition of the Cu-Pd alloy catalyst was fabricated at 6:4,the selectivity for CO increased and the production of multi-carbon compounds and hydrogen is suppressed.Introducing a Cu-Pd alloy catalyst with 6:4 ratio as the cathode of the MEAbased CO_(2) electrolyzer showed a CO faradaic efficiency of 92.8%at 2.4 V_(cell).We assumed that these results contributed from the crystal planes on the surface of the Cu-Pd alloy.The phases of the Cu-Pd alloy catalyst were partially separated through annealing to fabricate a catalyst with high selectivity for CO at low voltage and C_(2)H_4 at high voltage.The results of CO-stripping testing confirmed that when Cu partially separates from the lattice of the Cu-Pd alloy,the desorption of~*CO is suppressed,suggesting that C-C coupling reaction is favored.展开更多
The reduction of ilmenite concentrate by hydrogen gas was investigated in the temperature range of 500 to 1200℃. The microstructure and phase transition of the reduction products were studied by X-ray diffraction (...The reduction of ilmenite concentrate by hydrogen gas was investigated in the temperature range of 500 to 1200℃. The microstructure and phase transition of the reduction products were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical microscopy (OM). It was found that the weight loss and iron metallization rate increased with the increase of reduction temperature and reaction time. The iron metallization rate could reach 87.5% when the sample was reduced at 1150℃ for 80 min. The final phase constituents mainly consist of Fe, M305 solid solution phase (M=Mg, Ti, and Fe), and few titanium oxide. Microstructure analysis shows that the surfaces of the reduction products have many holes and cracks and the reactions take place from the exterior of the grain to its interior. The kinetics of reduction indicates that the rate-controlling step is diffusion process control with the activation energy of 89 kJ.mo1-1.展开更多
The Os+-catalytic reduction of N2O by H2 in gas phase has been theoretically investigated with B3LYP method.The reaction mechanisms on the sextet and quartet surfaces were found to be similar.The calculated sextet po...The Os+-catalytic reduction of N2O by H2 in gas phase has been theoretically investigated with B3LYP method.The reaction mechanisms on the sextet and quartet surfaces were found to be similar.The calculated sextet potential energy profiles show that the two reactions involved in the catalytic cycle,Os+ + N2O → OsO+ + N2 and OsO+ + H2 → Os+ + H2O,have barriers of 28.3 and 123.3 kJ/mol,respectively.In contrast,the reactions on the quartet surfaces are energetically much more favorable.These results rationalize the experimentally observed low catalytic reactivity of sextet(ground-state) Os+.Further,the crossing between the sextet and quartet surfaces are also suggested and qualitatively discussed.展开更多
Cr(Ⅵ)-based compounds pollution have attracted global concern due to serious harm to humans and environment.Hence,it is crucial to exploit an effective technique to eliminate Cr(Ⅵ)in water.Herein,we in-situ grown Bi...Cr(Ⅵ)-based compounds pollution have attracted global concern due to serious harm to humans and environment.Hence,it is crucial to exploit an effective technique to eliminate Cr(Ⅵ)in water.Herein,we in-situ grown BiOI on graphitic carbon nitride to prepare the BiOI/g-C_(3)N_(4)(BCN)direct Z-scheme heterojunction by solid phase engineering method at room temperature.Experimental result shown the photocatalytic activity of pure BiOI were obviously enhanced by constructing Z-scheme BCN heterostructure,and BCN-3 heterostructure exhibited the optimal photocatalytic degradation of RhB with 98%yield for 2.5 h and reduction of Cr(Ⅵ)with more than 99%yield for 1.5 h at pH=2.Stability test shows BCN-3 still kept more than 98%reduction efficiency after 6 cycles.In addition,we also studied the reduction mechanism that shown the.O_(2)^(-)radicals essentially helped to reduce the Cr(Ⅵ)in aqueous solution under illumination,verified the direct Z-scheme charge transfer path by X-ray photoelectron spectroscopy(XPS)and the free radical trapping experiment.The work open a new way for rationally designing photocatalyst heterostructure to reduce Cr(Ⅵ)to Cr(Ⅲ).展开更多
The reduction of titanomagnetite(TTM) ironsand, which contains 11.41wt% TiO_2 and 55.63wt% total Fe, by graphite was performed using a thermogravimetric analysis system under an argon gas atmosphere at 1423–1623 K....The reduction of titanomagnetite(TTM) ironsand, which contains 11.41wt% TiO_2 and 55.63wt% total Fe, by graphite was performed using a thermogravimetric analysis system under an argon gas atmosphere at 1423–1623 K. The behavior and effects of titanium in TTM ironsand during the reduction process were investigated by means of thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. During the reduction procedure, the titanium concentrated in the slag phase, where the phase transformation followed this sequence: Fe O + FeTiO_3 → Fe_2 TiO_4 → FeTiO_3 → FeTi_2O_5 → TiO_2. The calculated results for the reduction kinetics showed that the carbothermic reduction was controlled by the diffusion of ions through the product layer. Furthermore, the apparent activation energy was 170.35 k J·mol^(-1).展开更多
A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler...A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler) to examine the anti-noise ability for complex systems. Results show that the nonlinear dynamic system analysis method resists noise and reveals the internal dynamics of a weak signal from noise pollution. On this basis, the vertical upward gas–liquid two-phase flow in a 2 mm × 0.81 mm small rectangular channel is investigated. The frequency and energy distributions of the main oscillation mode are revealed by analyzing the time–frequency spectra of the pressure signals of different flow patterns. The positive power spectral density of singular-value frequency entropy and the damping ratio are extracted to characterize the evolution of flow patterns and achieve accurate recognition of different vertical upward gas–liquid flow patterns(bubbly flow:100%, slug flow: 92%, churn flow: 96%, annular flow: 100%). The proposed analysis method will enrich the dynamics theory of multi-phase flow in small channel.展开更多
Reduction of chromium-bearing vanadium–titanium sinter(CVTS) was studied under simulated conditions of a blast furnace, and thermodynamics and kinetics were theoretically analyzed. Reduction kinetics of CVTS at dif...Reduction of chromium-bearing vanadium–titanium sinter(CVTS) was studied under simulated conditions of a blast furnace, and thermodynamics and kinetics were theoretically analyzed. Reduction kinetics of CVTS at different temperatures was evaluated using a shrinking unreacted core model. The microstructure, mineral phase, and variation of the sinter during reduction were observed by X-ray diffraction, scanning electron microscopy, and metallographic microscopy. Results indicate that porosity of CVTS increased with temperature. Meanwhile, the reduction degree of the sinter improved with the reduction rate. Reduction of the sinter was controlled by a chemical reaction at the initial stage and inner diffusion at the final stage. Activation energies measured 29.22–99.69 k J/mol. Phase transformations in CVTS reduction are as follows: Fe_2O_3→Fe_3O_4→FeO→Fe; Fe_2TiO_5→Fe_2TiO_4→FeTiO_3; FeO·V_2O_3→V_2O_3; FeO·Cr_2O_3→Cr_2O_3.展开更多
Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-...Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-reduction method. The electrochemical stability of Tin O2n-1 was investigated and the results show almost no change in the redox region after oxidation for 20 h at 1.2 V(vs NHE) in 0.5 mol/L H2SO4 aqueous solution. The catalytic activity and stability of the Pt/Tin O2n-1 toward the oxygen reduction reaction(ORR) in 0.5 mol/L H2SO4 solution were investigated through the accelerated aging tests(AAT), and the morphology of the catalysts before and after the AAT was observed by transmission electron microscopy. At the potential of 0.55 V(vs SCE), the specific kinetic current density of the ORR on the Pt/Tin O2n-1 is about 1.5 times that of the Pt/C. The LSV curves for the Pt/C shift negatively obviously with the half-wave potential shifting about 0.02 V after 8000 cycles AAT, while no obvious change takes place for the LSV curves for the Pt/Tin O2n-1. The Pt particles supported on the carbon aggregate obviously, while the morphology of the Pt supported on Tin O2n-1 remains almost unchanged, which contributes to the electrochemical surface area loss of Pt/C being about 2times that of the Pt/Tin O2n-1. The superior catalytic stability of Pt/Tin O2n-1 toward the ORR could be attributed to the excellent stability of the Tin O2n-1 and the electronic interaction between the metals and the support.展开更多
Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an el...Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an electrolytic cell, constructed using phosphoric acid-doped polybenz- imidazole (PBI) membrane, which allowed operation at 170 ℃ Pt/C and PtMo/C with variable ratio of Pt/Mo were studied as the cathode catalysts. The results showed that PtMo/C catalysts significantly enhanced CO formation and inhibited CH4 formation compared with Pt/C catalyst. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy revealed that most Mo species existed as MoO3 in PtMo/C catalysts and the interaction between Pt and MoOx was likely responsible for the enhanced CO formation rate although these bicomponent catalysts in general had a larger particle size than Pt/C catalyst.展开更多
TiN- Al2O3 composite powder was prepared by aluminothermic reduction- nitridation method with starting materials of aluminum-containing dross and rutile,and metallic aluminum in the aluminum-containing dross as reduce...TiN- Al2O3 composite powder was prepared by aluminothermic reduction- nitridation method with starting materials of aluminum-containing dross and rutile,and metallic aluminum in the aluminum-containing dross as reducer. The influences of synthesis temperature(600-1 400 ℃) and aluminum-containing dross addition(20% lower than theoretical value,theoretical value,20% higher than theoretical value,and 50% higher than theoretical value) on phase compositions and microstructure of the composites were investigated,and the reaction mechanism was analyzed. The results show that(1) TiN- Al2O3 composite powder can be synthesized under the experimental conditions; the main phases are TiN,α-Al2O3,a little bytownite,and MgAl2O4;(2)enhancing synthesis temperature or increasing aluminumcontaining dross addition favors the reaction of aluminothermic reduction- nitridation;(3) in the synthesized products,α-Al2O3 is platy or columnar; TiN is sub-micron granular,which reinforces and toughens the composite.展开更多
Because imines could be used as convenient starting materials in various fields, the development of an easy synthetic method of imine was strongly desired. In response to this demand, we thought that it would be an ef...Because imines could be used as convenient starting materials in various fields, the development of an easy synthetic method of imine was strongly desired. In response to this demand, we thought that it would be an effective synthesis method if an aldehyde and an amine could be reacted to give an imine in good yield under solvent- and catalyst-free conditions. In fact, we tried the reaction of benzaldehyde with various amines under solvent- and catalyst-free conditions followed by removal of water that was produced in the reaction system by a vacuum pump, and desired imines could be obtained in good yields. Observation of this reaction using a nuclear magnetic resonance spectrometer revealed that the reaction rate was extremely fast at the initial stage but slowed over time. However, the reaction of benzaldehyde with aniline differed greatly, and the reaction rate dramatically improved in 47 - 48 minutes after the start of the reaction. At this time, we found that the reaction system underwent a phase transition from the liquid phase to the solid phase.展开更多
The aim of the research was to obtain both an excellent effluent for reuse and a reduced sludge production simultaneously by a combination process of anaerobic phase and Membrane bioreactor (MBR) technology in treat...The aim of the research was to obtain both an excellent effluent for reuse and a reduced sludge production simultaneously by a combination process of anaerobic phase and Membrane bioreactor (MBR) technology in treating domestic wastewater. During the experimental period of three months, excellent removals for COD, NH3-H, TN were obtained, and mean removals were 91.87%, 96.13%, and 69. 23%, respectively. Whereas, at first 20 days, the removal for TP was only about 15.87%. In the following days, about 30% of raw water was introduced into the anaerobic reactor to supply organics for denitrificatien and release of polyphosphate, then a significant improvement for TP removal was observed, and mean removal of TP increased to 76.35%. During the operational period, it was investigated that the permeate could meet the requirements of several water criteria for reuse except free chlorine, and a mean excess sludge yield coefficient of 0.137 g MLSS/g COD was obtained. Therefore, the predicted goals of permeate for reuse and excess sludge reduction could be both achieved after dosing a certain quantity of disinfectant into the permeate.展开更多
The modified Siemens process,which is the major process of producing polycrystalline silicon through current technologies,is a high temperature,slow,semi-batch process and the product is expensive primarily due to the...The modified Siemens process,which is the major process of producing polycrystalline silicon through current technologies,is a high temperature,slow,semi-batch process and the product is expensive primarily due to the large energy consumption.Therefore,the zinc reduction process,which can produce solar-grade silicon in a cost effective manner,should be redeveloped for these conditions.The SiCl2 generation ratio,which stands for the degree of the side reactions,can be decomposed to SiCl4 and ZnCl2 in gas phase zinc atmosphere in the exit where the temperature is very low.Therefore,the lower SiCl2 generation ratio is profitable with lower power consumption.Based on the thermodynamic data for the related pure substances,the relations of the SiCl2 generation ratio and pressure,temperature and the feed molar ratio(n(Zn)/n(SiCl4) are investigated and the graphs thereof are plotted.And the diagrams of Kpθ-T at standard atmosphere pressure have been plotted to account for the influence of temperature on the SiCl2 generation ratio.Furthermore,the diagram of Kpθ-T at different pressures have also been plotted to give an interpretation of the influence of pressure on the SiCl2 generation ratio.The results show that SiCl2 generation ratio increases with increasing temperature,and the higher pressure and excess gas phase zinc can restrict SiCl2 generation ratio.Finally,suitable operational conditions in the practical process of polycrystalline silicon manufacture by gas phase zinc reduction of SiCl4 have been established with 1200 K,0.2 MPa and the feed molar ratio(n(Zn) /n(SiCl4)) of 4 at the entrance.Under these conditions,SiCl2 generation ratio is very low,which indicates that the side reactions can be restricted and the energy consumption is reasonable.展开更多
A low-grade nickel laterite ore was reduced at different reduction temperatures. The morphology of metallic particles was investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS)...A low-grade nickel laterite ore was reduced at different reduction temperatures. The morphology of metallic particles was investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Experimental results indicate that the metallic nickel and iron gradually assemble and grow into larger spherical particles with increasing temperature and prolonging time. After reduction, the nickel laterite ore obviously changes into two parts of Fe-Ni metallic particles and slag matrix. An obvious relationship is found between the reduction of iron magnesium olivine and its crystal chemical properties. The nickel and iron oxides are reduced to metallic by reductant, and the lattice of olivine is destroyed. The entire reduction process is comprised of oxide reduction and metallic phase growth.展开更多
The indirect detection method basic principle of rate and concentration,application range and research results on gassolid two phase flow were discussed.The present development situation and the existing problems of r...The indirect detection method basic principle of rate and concentration,application range and research results on gassolid two phase flow were discussed.The present development situation and the existing problems of rate and concentration detection technology were analyzed and summarized.Emphatically analyzed the existing problems in the industrial application and research status of electrostatic method in measuring phase concentration.Design criterion of electrostatic phase concentration sensor is given,the superiority and wide industrial application prospect of the sensor used for phase concentration measurement are clarified.展开更多
Large scale utilization is still an urgent problem for waste red mud with a high content of alkaline metal component in the future.Laterite ores especially the saprolitic laterite ore are one refractory nickel resourc...Large scale utilization is still an urgent problem for waste red mud with a high content of alkaline metal component in the future.Laterite ores especially the saprolitic laterite ore are one refractory nickel resource,the nickel and iron of which can be effectively recovered by direct reduction and magnetic separation.Alkaline metal salts were usually added to enhance reduction of laterite ores.The feasibility of co-reduction roasting of a saprolitic laterite ore and red mud was investigated.Results show that the red mud addition promoted the reduction of the saprolitic laterite ore and the iron ores in the red mud were co-reduced and recovered.By adding 35wt%red mud,the nickel grade and recovery were 4.90wt%and 95.25wt%,and the corresponding iron grade and total recovery were 71.00wt%and 93.77wt%,respectively.The X-ray diffraction(XRD),scanning electron microscopy,and energy dispersive spectroscopy(SEM-EDS)analysis results revealed that red mud addition was helpful to increase the liquid phase and ferronickel grain growth.The chemical compositions"Ca O and Na_2O"in the red mud replaced Fe O to react with Si O_2 and Mg Si O_3 to form augite.展开更多
The effects of water content, shear rate, temperature, and solid particle concentration on viscosity reduction (VR) caused by forming stable emulsions were investigated using Omani heavy crude oil. The viscosity of ...The effects of water content, shear rate, temperature, and solid particle concentration on viscosity reduction (VR) caused by forming stable emulsions were investigated using Omani heavy crude oil. The viscosity of the crude oil was initially measured with respect to shear rates at different temperatures from 20 to 70℃. The crude oil exhibited a shear thinning behavior at all the temperatures. The strongest shear thinning was observed at 20℃. A non-ionic water soluble surfactant (Triton X-100) was used to form and stabilize crude oil emulsions. The emulsification process has significantly reduced the crude oil viscosity. The degree of VR was found to increase with an increase in water content and reach its maximum value at 50 % water content. The phase inversion from oil- oil emulsion occurred at 30 in-water emulsion to water-in- % water content. The results indicated that the VR was inversely proportional to temperature and concentration of silica nanoparticles. For water-in-oil emulsions, VR increased with shear rate and eventually reached a plateau at a shear rate of around 350 s^-1. This was attributed to the thinning behavior of the continuous phase. The VR of oil-in-water emulsions remained almost constant as the shear rate increased due to the Newtonian behavior of water, the continuous phase.展开更多
The carbothermic reduction of vanadium titanomagnetite concentrate(VTC)with the assistance of Na_(2)CO_(3)was conducted in an argon atmosphere between 1073 and 1473 K.X-ray diffraction and scanning electron microscopy...The carbothermic reduction of vanadium titanomagnetite concentrate(VTC)with the assistance of Na_(2)CO_(3)was conducted in an argon atmosphere between 1073 and 1473 K.X-ray diffraction and scanning electron microscopy were used to investigate the phase transformations during the reaction.By investigating the reaction between VTC and Na_(2)CO_(3),it was concluded that molten Na_(2)CO_(3)broke the structure of titanomagnetite by combining with the acidic oxides(Fe_(2)O_(3),TiO_(2),Al_(2)O_(3),and SiO_(2))to form a Na-rich melt and release FeO and MgO.Therefore,Na_(2)CO_(3)accelerated the reduction rate.In addition,adding Na_(2)CO_(3)also benefited the agglomeration of iron particles and the slag–metal separation by decreasing the viscosity of the slag.Thus,Na_(2)CO_(3)assisted carbothermic reduction is a promising method for treating VTC at low temperatures.展开更多
基金financially supported by the National Key Research and Development Program of China (No.2023YFC2909000)the National Natural Science Foundation of China(No.52174240)the Open Foundation of State Key Laboratory of Mineral Processing (No.BGRIMM-KJSKL-2023-15)。
文摘The mechanism involved in the phase transformation process of pyrolusite (MnO_(2)) during roasting in a reducing atmosphere was systematically elucidated in this study,with the aim of effectively using low-grade complex manganese ore resources.According to single-factor experiment results,the roasted product with a divalent manganese (Mn^(2+)) distribution rate of 95.30% was obtained at a roasting time of 25 min,a roasting temperature of 700℃,a CO concentration of 20at%,and a total gas volume of 500 mL·min^(-1),in which the manganese was mainly in the form of manganosite (MnO).Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core Thermodynamic calculations,X-ray photoelectron spectroscopy,and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO phase by phase,and the reduction of manganese oxides in each valence state proceeded simultaneously.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government MSIT(2021R1A2C2093358,2021R1A4A3027878,2022M3I3A1081901)financial support from the Lotte Chemical Company。
文摘Cu catalysts can convert CO_(2) through an electrochemical reduction reaction into a variety of useful carbon-based products.However,this capability provides an obstacle to increasing the selectivity for a single product.Herein,we report a simple fabrication method for a Cu-Pd alloy catalyst for use in a membrane electrode assembly(MEA)-based CO_(2) electrolyzer for the electrochemical CO_(2) reduction reaction(ECRR)with high selectivity for CO production.When the composition of the Cu-Pd alloy catalyst was fabricated at 6:4,the selectivity for CO increased and the production of multi-carbon compounds and hydrogen is suppressed.Introducing a Cu-Pd alloy catalyst with 6:4 ratio as the cathode of the MEAbased CO_(2) electrolyzer showed a CO faradaic efficiency of 92.8%at 2.4 V_(cell).We assumed that these results contributed from the crystal planes on the surface of the Cu-Pd alloy.The phases of the Cu-Pd alloy catalyst were partially separated through annealing to fabricate a catalyst with high selectivity for CO at low voltage and C_(2)H_4 at high voltage.The results of CO-stripping testing confirmed that when Cu partially separates from the lattice of the Cu-Pd alloy,the desorption of~*CO is suppressed,suggesting that C-C coupling reaction is favored.
基金supported by the Postgraduate Innovative Foundation of Shanghai University (SHUCX091031)the National Natural Science Foundation of China (No.51074105)the National Basic Research Priorities Program of China (No.2007CB613606)
文摘The reduction of ilmenite concentrate by hydrogen gas was investigated in the temperature range of 500 to 1200℃. The microstructure and phase transition of the reduction products were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical microscopy (OM). It was found that the weight loss and iron metallization rate increased with the increase of reduction temperature and reaction time. The iron metallization rate could reach 87.5% when the sample was reduced at 1150℃ for 80 min. The final phase constituents mainly consist of Fe, M305 solid solution phase (M=Mg, Ti, and Fe), and few titanium oxide. Microstructure analysis shows that the surfaces of the reduction products have many holes and cracks and the reactions take place from the exterior of the grain to its interior. The kinetics of reduction indicates that the rate-controlling step is diffusion process control with the activation energy of 89 kJ.mo1-1.
基金Supported by the General Program of the Applied Basic Research of Science and Technology Department of Yunnan Province (No.2008ZC095)the Scientific Research Fund of Yunnan Provincial Education Department (No.08Y0195)
文摘The Os+-catalytic reduction of N2O by H2 in gas phase has been theoretically investigated with B3LYP method.The reaction mechanisms on the sextet and quartet surfaces were found to be similar.The calculated sextet potential energy profiles show that the two reactions involved in the catalytic cycle,Os+ + N2O → OsO+ + N2 and OsO+ + H2 → Os+ + H2O,have barriers of 28.3 and 123.3 kJ/mol,respectively.In contrast,the reactions on the quartet surfaces are energetically much more favorable.These results rationalize the experimentally observed low catalytic reactivity of sextet(ground-state) Os+.Further,the crossing between the sextet and quartet surfaces are also suggested and qualitatively discussed.
基金supported by the National Natural Science Foundation of China under Grant(No.51871078)Heilongjiang Science Foundation(No.E2018028)
文摘Cr(Ⅵ)-based compounds pollution have attracted global concern due to serious harm to humans and environment.Hence,it is crucial to exploit an effective technique to eliminate Cr(Ⅵ)in water.Herein,we in-situ grown BiOI on graphitic carbon nitride to prepare the BiOI/g-C_(3)N_(4)(BCN)direct Z-scheme heterojunction by solid phase engineering method at room temperature.Experimental result shown the photocatalytic activity of pure BiOI were obviously enhanced by constructing Z-scheme BCN heterostructure,and BCN-3 heterostructure exhibited the optimal photocatalytic degradation of RhB with 98%yield for 2.5 h and reduction of Cr(Ⅵ)with more than 99%yield for 1.5 h at pH=2.Stability test shows BCN-3 still kept more than 98%reduction efficiency after 6 cycles.In addition,we also studied the reduction mechanism that shown the.O_(2)^(-)radicals essentially helped to reduce the Cr(Ⅵ)in aqueous solution under illumination,verified the direct Z-scheme charge transfer path by X-ray photoelectron spectroscopy(XPS)and the free radical trapping experiment.The work open a new way for rationally designing photocatalyst heterostructure to reduce Cr(Ⅵ)to Cr(Ⅲ).
基金financially supported by National Basic Research Program of China(No.2012CB720400)the National Natural Science Foundation of China(No.51504216)
文摘The reduction of titanomagnetite(TTM) ironsand, which contains 11.41wt% TiO_2 and 55.63wt% total Fe, by graphite was performed using a thermogravimetric analysis system under an argon gas atmosphere at 1423–1623 K. The behavior and effects of titanium in TTM ironsand during the reduction process were investigated by means of thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. During the reduction procedure, the titanium concentrated in the slag phase, where the phase transformation followed this sequence: Fe O + FeTiO_3 → Fe_2 TiO_4 → FeTiO_3 → FeTi_2O_5 → TiO_2. The calculated results for the reduction kinetics showed that the carbothermic reduction was controlled by the diffusion of ions through the product layer. Furthermore, the apparent activation energy was 170.35 k J·mol^(-1).
基金Supported by the National Natural Science Foundation of China(51406031)
文摘A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler) to examine the anti-noise ability for complex systems. Results show that the nonlinear dynamic system analysis method resists noise and reveals the internal dynamics of a weak signal from noise pollution. On this basis, the vertical upward gas–liquid two-phase flow in a 2 mm × 0.81 mm small rectangular channel is investigated. The frequency and energy distributions of the main oscillation mode are revealed by analyzing the time–frequency spectra of the pressure signals of different flow patterns. The positive power spectral density of singular-value frequency entropy and the damping ratio are extracted to characterize the evolution of flow patterns and achieve accurate recognition of different vertical upward gas–liquid flow patterns(bubbly flow:100%, slug flow: 92%, churn flow: 96%, annular flow: 100%). The proposed analysis method will enrich the dynamics theory of multi-phase flow in small channel.
基金financially supported by the National Natural Science Foundation of China(Nos.51604065 and 51674084)the Fundamental Funds for the Central Universities(Nos.150203003 and 150202001)+2 种基金the Natural Science Foundation of Liaoning Province(20170540316)the China Postdoctoral Science Foundation(2017M611246)the NEU Postdoctoral Science Foundation(No.20160304)
文摘Reduction of chromium-bearing vanadium–titanium sinter(CVTS) was studied under simulated conditions of a blast furnace, and thermodynamics and kinetics were theoretically analyzed. Reduction kinetics of CVTS at different temperatures was evaluated using a shrinking unreacted core model. The microstructure, mineral phase, and variation of the sinter during reduction were observed by X-ray diffraction, scanning electron microscopy, and metallographic microscopy. Results indicate that porosity of CVTS increased with temperature. Meanwhile, the reduction degree of the sinter improved with the reduction rate. Reduction of the sinter was controlled by a chemical reaction at the initial stage and inner diffusion at the final stage. Activation energies measured 29.22–99.69 k J/mol. Phase transformations in CVTS reduction are as follows: Fe_2O_3→Fe_3O_4→FeO→Fe; Fe_2TiO_5→Fe_2TiO_4→FeTiO_3; FeO·V_2O_3→V_2O_3; FeO·Cr_2O_3→Cr_2O_3.
基金Project(21406273)supported by the National Natural Science Foundation of China
文摘Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-reduction method. The electrochemical stability of Tin O2n-1 was investigated and the results show almost no change in the redox region after oxidation for 20 h at 1.2 V(vs NHE) in 0.5 mol/L H2SO4 aqueous solution. The catalytic activity and stability of the Pt/Tin O2n-1 toward the oxygen reduction reaction(ORR) in 0.5 mol/L H2SO4 solution were investigated through the accelerated aging tests(AAT), and the morphology of the catalysts before and after the AAT was observed by transmission electron microscopy. At the potential of 0.55 V(vs SCE), the specific kinetic current density of the ORR on the Pt/Tin O2n-1 is about 1.5 times that of the Pt/C. The LSV curves for the Pt/C shift negatively obviously with the half-wave potential shifting about 0.02 V after 8000 cycles AAT, while no obvious change takes place for the LSV curves for the Pt/Tin O2n-1. The Pt particles supported on the carbon aggregate obviously, while the morphology of the Pt supported on Tin O2n-1 remains almost unchanged, which contributes to the electrochemical surface area loss of Pt/C being about 2times that of the Pt/Tin O2n-1. The superior catalytic stability of Pt/Tin O2n-1 toward the ORR could be attributed to the excellent stability of the Tin O2n-1 and the electronic interaction between the metals and the support.
基金supported by the Ministry of Science and Technology of China(Grant No:2012CB215500 and 2013CB933100)the National Natural Science Foundation of China(Grant No:21103178 and 21033009)
文摘Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an electrolytic cell, constructed using phosphoric acid-doped polybenz- imidazole (PBI) membrane, which allowed operation at 170 ℃ Pt/C and PtMo/C with variable ratio of Pt/Mo were studied as the cathode catalysts. The results showed that PtMo/C catalysts significantly enhanced CO formation and inhibited CH4 formation compared with Pt/C catalyst. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy revealed that most Mo species existed as MoO3 in PtMo/C catalysts and the interaction between Pt and MoOx was likely responsible for the enhanced CO formation rate although these bicomponent catalysts in general had a larger particle size than Pt/C catalyst.
文摘TiN- Al2O3 composite powder was prepared by aluminothermic reduction- nitridation method with starting materials of aluminum-containing dross and rutile,and metallic aluminum in the aluminum-containing dross as reducer. The influences of synthesis temperature(600-1 400 ℃) and aluminum-containing dross addition(20% lower than theoretical value,theoretical value,20% higher than theoretical value,and 50% higher than theoretical value) on phase compositions and microstructure of the composites were investigated,and the reaction mechanism was analyzed. The results show that(1) TiN- Al2O3 composite powder can be synthesized under the experimental conditions; the main phases are TiN,α-Al2O3,a little bytownite,and MgAl2O4;(2)enhancing synthesis temperature or increasing aluminumcontaining dross addition favors the reaction of aluminothermic reduction- nitridation;(3) in the synthesized products,α-Al2O3 is platy or columnar; TiN is sub-micron granular,which reinforces and toughens the composite.
文摘Because imines could be used as convenient starting materials in various fields, the development of an easy synthetic method of imine was strongly desired. In response to this demand, we thought that it would be an effective synthesis method if an aldehyde and an amine could be reacted to give an imine in good yield under solvent- and catalyst-free conditions. In fact, we tried the reaction of benzaldehyde with various amines under solvent- and catalyst-free conditions followed by removal of water that was produced in the reaction system by a vacuum pump, and desired imines could be obtained in good yields. Observation of this reaction using a nuclear magnetic resonance spectrometer revealed that the reaction rate was extremely fast at the initial stage but slowed over time. However, the reaction of benzaldehyde with aniline differed greatly, and the reaction rate dramatically improved in 47 - 48 minutes after the start of the reaction. At this time, we found that the reaction system underwent a phase transition from the liquid phase to the solid phase.
文摘The aim of the research was to obtain both an excellent effluent for reuse and a reduced sludge production simultaneously by a combination process of anaerobic phase and Membrane bioreactor (MBR) technology in treating domestic wastewater. During the experimental period of three months, excellent removals for COD, NH3-H, TN were obtained, and mean removals were 91.87%, 96.13%, and 69. 23%, respectively. Whereas, at first 20 days, the removal for TP was only about 15.87%. In the following days, about 30% of raw water was introduced into the anaerobic reactor to supply organics for denitrificatien and release of polyphosphate, then a significant improvement for TP removal was observed, and mean removal of TP increased to 76.35%. During the operational period, it was investigated that the permeate could meet the requirements of several water criteria for reuse except free chlorine, and a mean excess sludge yield coefficient of 0.137 g MLSS/g COD was obtained. Therefore, the predicted goals of permeate for reuse and excess sludge reduction could be both achieved after dosing a certain quantity of disinfectant into the permeate.
基金Supported by the Provincial personnel training funds(kksy201352109)the National Natural Science Foundation of China(51374118)
文摘The modified Siemens process,which is the major process of producing polycrystalline silicon through current technologies,is a high temperature,slow,semi-batch process and the product is expensive primarily due to the large energy consumption.Therefore,the zinc reduction process,which can produce solar-grade silicon in a cost effective manner,should be redeveloped for these conditions.The SiCl2 generation ratio,which stands for the degree of the side reactions,can be decomposed to SiCl4 and ZnCl2 in gas phase zinc atmosphere in the exit where the temperature is very low.Therefore,the lower SiCl2 generation ratio is profitable with lower power consumption.Based on the thermodynamic data for the related pure substances,the relations of the SiCl2 generation ratio and pressure,temperature and the feed molar ratio(n(Zn)/n(SiCl4) are investigated and the graphs thereof are plotted.And the diagrams of Kpθ-T at standard atmosphere pressure have been plotted to account for the influence of temperature on the SiCl2 generation ratio.Furthermore,the diagram of Kpθ-T at different pressures have also been plotted to give an interpretation of the influence of pressure on the SiCl2 generation ratio.The results show that SiCl2 generation ratio increases with increasing temperature,and the higher pressure and excess gas phase zinc can restrict SiCl2 generation ratio.Finally,suitable operational conditions in the practical process of polycrystalline silicon manufacture by gas phase zinc reduction of SiCl4 have been established with 1200 K,0.2 MPa and the feed molar ratio(n(Zn) /n(SiCl4)) of 4 at the entrance.Under these conditions,SiCl2 generation ratio is very low,which indicates that the side reactions can be restricted and the energy consumption is reasonable.
基金Project(51134002)supported by the National Natural Science Foundation of ChinaProject(2012BAB14B02)supported by the Ministry of Science and Technology of ChinaProject(12120113086600)supported by Ministry of Land and Resources of China
文摘A low-grade nickel laterite ore was reduced at different reduction temperatures. The morphology of metallic particles was investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Experimental results indicate that the metallic nickel and iron gradually assemble and grow into larger spherical particles with increasing temperature and prolonging time. After reduction, the nickel laterite ore obviously changes into two parts of Fe-Ni metallic particles and slag matrix. An obvious relationship is found between the reduction of iron magnesium olivine and its crystal chemical properties. The nickel and iron oxides are reduced to metallic by reductant, and the lattice of olivine is destroyed. The entire reduction process is comprised of oxide reduction and metallic phase growth.
基金Science and Technology on Electronic Test and Measurement Laboratory(No.9140C12040515X)
文摘The indirect detection method basic principle of rate and concentration,application range and research results on gassolid two phase flow were discussed.The present development situation and the existing problems of rate and concentration detection technology were analyzed and summarized.Emphatically analyzed the existing problems in the industrial application and research status of electrostatic method in measuring phase concentration.Design criterion of electrostatic phase concentration sensor is given,the superiority and wide industrial application prospect of the sensor used for phase concentration measurement are clarified.
基金financially supported by the National Natural Science Foundation of China (Nos.51474018 and 51674018)
文摘Large scale utilization is still an urgent problem for waste red mud with a high content of alkaline metal component in the future.Laterite ores especially the saprolitic laterite ore are one refractory nickel resource,the nickel and iron of which can be effectively recovered by direct reduction and magnetic separation.Alkaline metal salts were usually added to enhance reduction of laterite ores.The feasibility of co-reduction roasting of a saprolitic laterite ore and red mud was investigated.Results show that the red mud addition promoted the reduction of the saprolitic laterite ore and the iron ores in the red mud were co-reduced and recovered.By adding 35wt%red mud,the nickel grade and recovery were 4.90wt%and 95.25wt%,and the corresponding iron grade and total recovery were 71.00wt%and 93.77wt%,respectively.The X-ray diffraction(XRD),scanning electron microscopy,and energy dispersive spectroscopy(SEM-EDS)analysis results revealed that red mud addition was helpful to increase the liquid phase and ferronickel grain growth.The chemical compositions"Ca O and Na_2O"in the red mud replaced Fe O to react with Si O_2 and Mg Si O_3 to form augite.
文摘The effects of water content, shear rate, temperature, and solid particle concentration on viscosity reduction (VR) caused by forming stable emulsions were investigated using Omani heavy crude oil. The viscosity of the crude oil was initially measured with respect to shear rates at different temperatures from 20 to 70℃. The crude oil exhibited a shear thinning behavior at all the temperatures. The strongest shear thinning was observed at 20℃. A non-ionic water soluble surfactant (Triton X-100) was used to form and stabilize crude oil emulsions. The emulsification process has significantly reduced the crude oil viscosity. The degree of VR was found to increase with an increase in water content and reach its maximum value at 50 % water content. The phase inversion from oil- oil emulsion occurred at 30 in-water emulsion to water-in- % water content. The results indicated that the VR was inversely proportional to temperature and concentration of silica nanoparticles. For water-in-oil emulsions, VR increased with shear rate and eventually reached a plateau at a shear rate of around 350 s^-1. This was attributed to the thinning behavior of the continuous phase. The VR of oil-in-water emulsions remained almost constant as the shear rate increased due to the Newtonian behavior of water, the continuous phase.
基金financially supported by the National Key R&D Program of China(No.2018YFC1900500)the National Natural Science Foundation of China(Nos.21908231,51774260,51804289,and 51904286)+2 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.QYZDJ-SSW-JSC021)the CAS Interdisciplinary Innovation Teamthe Special Project for Transformation of Major Technological Achievements in Hebei Province,China(No.19044012Z)。
文摘The carbothermic reduction of vanadium titanomagnetite concentrate(VTC)with the assistance of Na_(2)CO_(3)was conducted in an argon atmosphere between 1073 and 1473 K.X-ray diffraction and scanning electron microscopy were used to investigate the phase transformations during the reaction.By investigating the reaction between VTC and Na_(2)CO_(3),it was concluded that molten Na_(2)CO_(3)broke the structure of titanomagnetite by combining with the acidic oxides(Fe_(2)O_(3),TiO_(2),Al_(2)O_(3),and SiO_(2))to form a Na-rich melt and release FeO and MgO.Therefore,Na_(2)CO_(3)accelerated the reduction rate.In addition,adding Na_(2)CO_(3)also benefited the agglomeration of iron particles and the slag–metal separation by decreasing the viscosity of the slag.Thus,Na_(2)CO_(3)assisted carbothermic reduction is a promising method for treating VTC at low temperatures.