The effect of Cr content and cooling rate on the microstructure of Al-Mn alloy was studied using well resistance furnace melting,and the alloy was analyzed using scanning electron microscopy(SEM)and X-ray diffraction(...The effect of Cr content and cooling rate on the microstructure of Al-Mn alloy was studied using well resistance furnace melting,and the alloy was analyzed using scanning electron microscopy(SEM)and X-ray diffraction(XRD).The experimental results showed that adding Cr could significantly improve the morphology of the primary phase in the Al-2.5Mn alloy.Without Cr,the primary phase in the alloy was thick,needle-like,and strip-like structure.After adding 0.2wt%-0.5wt%Cr,the primary phase in the upper part of the alloy was gradually fined and reached the best effect at 0.35wt%Cr.When the content of Cr was 0.5wt%,the microstructure of the primary phase in the upper part began to coarsen.The bottom of the alloy was a large bulk phase,but still much finer than that without adding Cr.XRD and SEM analysis showed that the precipitation phase at the bottom was mainly Al85Mn7Cr8,while the fine microstructure at the top was Al6Mn and Al3Mn.The results of the cooling rate experiments showed that the primary phase of Al-2.5Mn-0.35Cr was further refined,and the eutectic microstructure was partly achieved,under air-cooling condition.And when the cooling method was iron die-cooling,the microstructure of the Al-2.5Mn-0.35Cr alloy was changed into a eutectic microstructure.展开更多
By means of scanning electron microscopy(SEM), energy dispersive spectrum(EDS), X-ray diffractometry(XRD) and metallographic analysis, the effects of variation of magnesium content on phase constituents of Al-Mg-Si-Cu...By means of scanning electron microscopy(SEM), energy dispersive spectrum(EDS), X-ray diffractometry(XRD) and metallographic analysis, the effects of variation of magnesium content on phase constituents of Al-Mg-Si-Cu alloys were investigated. The results indicate that the constituents formed during casting alloys are main Al1.9CuMg4.1Si3.3,Al4(MnFe)3Si2 and Mg2Si, while pure Si is only present in the alloy containing lower magnesium content. Increasing Mg content leads to increasing the amount of Mg2Si, but decreasing the amount of Al1.9CuMg4.1Si3.3 and Al4(MnFe)3Si2. During the following homogenization process, Al1.9CuMg4.1Si3.3 is completely dissolved, Al4(MnFe)3Si2 and pure Si remain unchanged. After rolling and final heat treatment, the constituents in the alloys change no longer.展开更多
Bulk YBCO samples were prepared by PMP method. The nominal composition was Y123+xwt% Y211+10 wt% Ag2O (x= 0,15,25,40).The result of magnetic measurements indicated the sample with x= 1 5 at 77 K exhibited a J0 of 3. 9...Bulk YBCO samples were prepared by PMP method. The nominal composition was Y123+xwt% Y211+10 wt% Ag2O (x= 0,15,25,40).The result of magnetic measurements indicated the sample with x= 1 5 at 77 K exhibited a J0 of 3. 9 ×104 A/cm2 at 0.1 T and 2. 4 ×104A/cm2 at 1.0 T.The morphology of samples suggested that fine dispersed Y2BaCuO5 phase acts as effective pinning centers.展开更多
E-T or log p-1/T diagrams showing the influence of temperature and pressure in a gaseous phase were presented in par tⅠof the overview.I n partⅡ,the relationship between E-T and Kellogg diagrams or between E-T and E...E-T or log p-1/T diagrams showing the influence of temperature and pressure in a gaseous phase were presented in par tⅠof the overview.I n partⅡ,the relationship between E-T and Kellogg diagrams or between E-T and E-pH diagrams is discussed.E-T diagrams cover larger field of application than the other two.The practical use of E-T or log p-1/T diagrams is also investigated,which includes:the calculation of polycomponent equilibria in a gaseous phase,the prediction of cor rosion products,the interpretation of catalytic mechanism,the exploration for the possibility of producing aluminum with carbothermic method,etc.The limitation of this kind of diagrams is also discussed.展开更多
Research interests have recently been directed towards electrical discharges in multi-phase environments.Natural electrical discharges,such as lightning and coronas,occur in the Earth's atmosphere,which is actually a...Research interests have recently been directed towards electrical discharges in multi-phase environments.Natural electrical discharges,such as lightning and coronas,occur in the Earth's atmosphere,which is actually a mixture of gaseous phase(air) and suspended solid and liquid particulate matters(PMs).An example of an anthropogenic gaseous multi-phase environment is the flow of flue gas through electrostatic precipitators(ESPs),which are generally regarded as a mixture of a post-combustion gas with solid PM and microdroplets suspended in it.Electrical discharges in multi-phase environments,the knowledge of which is scarce,are becoming an attractive research subject,offering a wide variety of possible discharges and multi-phase environments to be studied.This paper is an introduction to electrical discharges in multi-phase environments.It is focused on DC negative coronas and accompanying electrohydrodynamic(EHD) flows in a gaseous two-phase fluid formed by air(a gaseous phase) and solid PM(a solid phase),run under laboratory conditions.The introduction is based on a review of the relevant literature.Two cases will be considered:the first case is of a gaseous two-phase fluid,initially motionless in a closed chamber before being subjected to a negative corona(with the needle-toplate electrode arrangement),which afterwards induces an EHD flow in the chamber,and the second,of a gaseous two-phase fluid flowing transversely with respect to the needle-to-plate electrode axis along a chamber with a corona discharge running between the electrodes.This review-based introductory paper should be of interest to theoretical researchers and modellers in the field of negative corona discharges in single-or two-phase fluids,and for engineers who work on designing EHD devices(such as ESPs,EHD pumps,and smoke detectors).展开更多
This paper describes the phase-transition energies from published loading curves on the basis of the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> law that does not violate the energy la...This paper describes the phase-transition energies from published loading curves on the basis of the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> law that does not violate the energy law by assuming h<sup>2</sup> instead, as still do ISO-ASTM 14,577 standards. This law is valid for all materials and all “one-point indentation” temperatures. It detects initial surface effects and phase-transition kink-unsteadiness. Why is that important? The mechanically induced phase-transitions form polymorph interfaces with increased risk of crash nucleation for example at the pickle forks of airliners. After our published crashing risk, as nucleated within microscopic polymorph-interfaces via pre-cracks, had finally appeared (we presented microscopic images (5000×) from a model system), 550 airliners were all at once grounded for 18 months due to such microscopic pre-cracks at their pickle forks (connection device for wing to body). These pre-cracks at phase-transition interfaces were previously not complained at the (semi)yearlycheckups of all airliners. But materials with higher compliance against phase- transitions must be developed for everybody’s safety, most easily by checking with nanoindentations, using their physically correct analyses. Unfortunately, non-physical analyses, as based on the after all incredible exponent 2 on h for the F<sub>N</sub> versus h loading curve are still enforced by ISO-ASTM standards that cannot detect phase-transitions. These standards propagate that all of the force, as applied to the penetrating cone or pyramid shall be used for the depth formation, but not also in part for the pressure to the indenter environment. However, the remaining part of pressure (that was not consumed for migrations, etc.) is always used for the elastic modulus detection routine. That severely violates the energy-law! Furthermore, the now physically analyzed published loading curves contain the phase-transition onsets and energies information, because these old-fashioned authors innocently (?) published (of course correct) experimental loading curves. These follow as ever the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> relation that does not violate the energy law. Nevertheless, the old-fashioned authors stubbornly assume h<sup>2</sup>instead of h<sup>3/2</sup> as still do ISO-ASTM 14,577 standards according to an Oliver-Pharr publication of 1992 and textbooks. The present work contributes to understanding the temperature dependence of phase-transitions under mechanical load, not only for aviation and space flights, which is important. The physical calculations use exclusively regressions and pure algebra (no iterations, no fittings, and no simulations) in a series of straightforward steps by correcting for unavoidable initial effects from the axis cuts of the linear branches from the above equation exhibiting sharp kink unsteadiness at the onset of phase transitions. The test loading curves are from Molybdenum and Al 7075 alloy. The valid published loading curves strictly follow the F<sub>N</sub> = k-h<sup>3/2</sup> relation. Full applied work, conversion work, and conversion work per depth unit show reliable overall comparable order of magnitude values at temperature increase by 150°C (Al 7075) and 980°C (Mo) when also considering different physical hardnesses and penetration depths. It turns out how much the normalized endothermic phase-transition energy decreases upon temperature increase. For the only known 1000°C indentation we provide reason that the presented loading curves changes are only to a minor degree caused by the thermal expansion. The results with Al 7075 up to 170°C are successfully compared. Al 7075 alloy is also checked by indentation with liquid nitrogen cooling (77 K). It gives two endothermic and one very prominent exothermic phase transition with particularly high normalized phase-transition energy. This indentation loading curve at liquid nitrogen temperature reveals epochal novelties. The energy requiring endothermic phase transitions (already seen at 20°C and above) at 77 K is shortly after the start of the second polymorph (sharply at 19.53 N loading force) followed by a strongly exothermic phase-transition by producing (that is losing) energy-content. Both processes at 77 K are totally unexpected. The produced energy per depth unit is much higher energy than the one required for the previous endothermic conversions. This exothermic phase-transition profits from the inability to provide further energy for the formation of the third polymorph as endothermic obtained at 70°C and above. That is only possible because the very cold crystal can no longer support endothermic events but supports exothermic ones. Both endothermic and exothermic phase-transitions at 77 K under load are unprecedented and were not expected before. While the energetic support at 77 K for endothermic processes under mechanical load is unusual but still understandable (there are also further means to produce lower temperatures). But strongly exothermicphase-transition under mechanical load for the production of new modification with negative energy content (less than the energy content of the ambient polymorph) at very low temperature is an epochal event here on earth. It leads to new global thinking and promises important new applications. The energy content of strongly exothermic transformed material is less than the thermodynamic standard zero energy-content on earth. And it can only be reached when there is no possibility left to produce an endothermic phase-transition. Such less than zero-energy-content materials should be isolated, using appropriate equipment. Their properties must be investigated by chemists, crystallographers, and physicists for cosmological reasons. It could be that such materials will require cooling despite their low energy content (higher stability!) and not survive at ambient temperatures and pressures on earth, but only because we do not know of such negative-energy-content materials with our arbitrary thermodynamic standard zeros on earth. At first one will have to study how far we can go up with temperature for keeping them stable. Thus, the apparently never before considered unprecedented result opens up new thinking for the search of new polymorphs that can, of course, not be reached by heating. Various further applications including cosmology and space flight explorations are profiting from it.展开更多
Two experimental single crystal superalloys with 2% Cr and 4% Cr (mass fraction) were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Cr content on...Two experimental single crystal superalloys with 2% Cr and 4% Cr (mass fraction) were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Cr content on the microstructure, phase stability, tensile properties at 1100 °C and stress rupture properties at 1070 °C and 160 MPa of the single crystal superalloy were investigated. The results show that the size ofγ′ phase particles become small and uniform, and the cubic shape turns a little regular with the increase of Cr content. Theγ′ directional coarsening and rafting were observed in the 2% Cr and 4% Cr alloys after long term aging (LTA) at 1100 °C. The rafting rate ofγ′ phase increased with increasing Cr content. Needle-shaped topologically close packed (TCP) phases precipitated and grew along fixed direction in both alloys. The precipitating rate and volume fraction of TCP phases significantly increased with the increase of Cr content. The tensile property of the alloy increased and the stress rupture properties of the alloy decreased with the increase of Cr content at high temperature. The increase of Cr content increased the partition ratio of TCP forming elements, Re, W, and Mo, and the saturation degrees of these elements inγ phases increased. Therefore, the high temperature phase stability of the alloy decreased with the increase of Cr content.展开更多
基金financially supported by the Research Foundation of Shenyang Aerospace University
文摘The effect of Cr content and cooling rate on the microstructure of Al-Mn alloy was studied using well resistance furnace melting,and the alloy was analyzed using scanning electron microscopy(SEM)and X-ray diffraction(XRD).The experimental results showed that adding Cr could significantly improve the morphology of the primary phase in the Al-2.5Mn alloy.Without Cr,the primary phase in the alloy was thick,needle-like,and strip-like structure.After adding 0.2wt%-0.5wt%Cr,the primary phase in the upper part of the alloy was gradually fined and reached the best effect at 0.35wt%Cr.When the content of Cr was 0.5wt%,the microstructure of the primary phase in the upper part began to coarsen.The bottom of the alloy was a large bulk phase,but still much finer than that without adding Cr.XRD and SEM analysis showed that the precipitation phase at the bottom was mainly Al85Mn7Cr8,while the fine microstructure at the top was Al6Mn and Al3Mn.The results of the cooling rate experiments showed that the primary phase of Al-2.5Mn-0.35Cr was further refined,and the eutectic microstructure was partly achieved,under air-cooling condition.And when the cooling method was iron die-cooling,the microstructure of the Al-2.5Mn-0.35Cr alloy was changed into a eutectic microstructure.
基金Project(2002AA331050) supported by Hi-tech Research and Development Program of China project(0208) supported by Science and Technology Research of Ministry of Education of China
文摘By means of scanning electron microscopy(SEM), energy dispersive spectrum(EDS), X-ray diffractometry(XRD) and metallographic analysis, the effects of variation of magnesium content on phase constituents of Al-Mg-Si-Cu alloys were investigated. The results indicate that the constituents formed during casting alloys are main Al1.9CuMg4.1Si3.3,Al4(MnFe)3Si2 and Mg2Si, while pure Si is only present in the alloy containing lower magnesium content. Increasing Mg content leads to increasing the amount of Mg2Si, but decreasing the amount of Al1.9CuMg4.1Si3.3 and Al4(MnFe)3Si2. During the following homogenization process, Al1.9CuMg4.1Si3.3 is completely dissolved, Al4(MnFe)3Si2 and pure Si remain unchanged. After rolling and final heat treatment, the constituents in the alloys change no longer.
文摘Bulk YBCO samples were prepared by PMP method. The nominal composition was Y123+xwt% Y211+10 wt% Ag2O (x= 0,15,25,40).The result of magnetic measurements indicated the sample with x= 1 5 at 77 K exhibited a J0 of 3. 9 ×104 A/cm2 at 0.1 T and 2. 4 ×104A/cm2 at 1.0 T.The morphology of samples suggested that fine dispersed Y2BaCuO5 phase acts as effective pinning centers.
基金Natural Science Foundation of Shandong province.
文摘E-T or log p-1/T diagrams showing the influence of temperature and pressure in a gaseous phase were presented in par tⅠof the overview.I n partⅡ,the relationship between E-T and Kellogg diagrams or between E-T and E-pH diagrams is discussed.E-T diagrams cover larger field of application than the other two.The practical use of E-T or log p-1/T diagrams is also investigated,which includes:the calculation of polycomponent equilibria in a gaseous phase,the prediction of cor rosion products,the interpretation of catalytic mechanism,the exploration for the possibility of producing aluminum with carbothermic method,etc.The limitation of this kind of diagrams is also discussed.
基金supported by the National Science Centre(Grant No.UMO-2013/09/B/ST8/02054)
文摘Research interests have recently been directed towards electrical discharges in multi-phase environments.Natural electrical discharges,such as lightning and coronas,occur in the Earth's atmosphere,which is actually a mixture of gaseous phase(air) and suspended solid and liquid particulate matters(PMs).An example of an anthropogenic gaseous multi-phase environment is the flow of flue gas through electrostatic precipitators(ESPs),which are generally regarded as a mixture of a post-combustion gas with solid PM and microdroplets suspended in it.Electrical discharges in multi-phase environments,the knowledge of which is scarce,are becoming an attractive research subject,offering a wide variety of possible discharges and multi-phase environments to be studied.This paper is an introduction to electrical discharges in multi-phase environments.It is focused on DC negative coronas and accompanying electrohydrodynamic(EHD) flows in a gaseous two-phase fluid formed by air(a gaseous phase) and solid PM(a solid phase),run under laboratory conditions.The introduction is based on a review of the relevant literature.Two cases will be considered:the first case is of a gaseous two-phase fluid,initially motionless in a closed chamber before being subjected to a negative corona(with the needle-toplate electrode arrangement),which afterwards induces an EHD flow in the chamber,and the second,of a gaseous two-phase fluid flowing transversely with respect to the needle-to-plate electrode axis along a chamber with a corona discharge running between the electrodes.This review-based introductory paper should be of interest to theoretical researchers and modellers in the field of negative corona discharges in single-or two-phase fluids,and for engineers who work on designing EHD devices(such as ESPs,EHD pumps,and smoke detectors).
文摘This paper describes the phase-transition energies from published loading curves on the basis of the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> law that does not violate the energy law by assuming h<sup>2</sup> instead, as still do ISO-ASTM 14,577 standards. This law is valid for all materials and all “one-point indentation” temperatures. It detects initial surface effects and phase-transition kink-unsteadiness. Why is that important? The mechanically induced phase-transitions form polymorph interfaces with increased risk of crash nucleation for example at the pickle forks of airliners. After our published crashing risk, as nucleated within microscopic polymorph-interfaces via pre-cracks, had finally appeared (we presented microscopic images (5000×) from a model system), 550 airliners were all at once grounded for 18 months due to such microscopic pre-cracks at their pickle forks (connection device for wing to body). These pre-cracks at phase-transition interfaces were previously not complained at the (semi)yearlycheckups of all airliners. But materials with higher compliance against phase- transitions must be developed for everybody’s safety, most easily by checking with nanoindentations, using their physically correct analyses. Unfortunately, non-physical analyses, as based on the after all incredible exponent 2 on h for the F<sub>N</sub> versus h loading curve are still enforced by ISO-ASTM standards that cannot detect phase-transitions. These standards propagate that all of the force, as applied to the penetrating cone or pyramid shall be used for the depth formation, but not also in part for the pressure to the indenter environment. However, the remaining part of pressure (that was not consumed for migrations, etc.) is always used for the elastic modulus detection routine. That severely violates the energy-law! Furthermore, the now physically analyzed published loading curves contain the phase-transition onsets and energies information, because these old-fashioned authors innocently (?) published (of course correct) experimental loading curves. These follow as ever the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> relation that does not violate the energy law. Nevertheless, the old-fashioned authors stubbornly assume h<sup>2</sup>instead of h<sup>3/2</sup> as still do ISO-ASTM 14,577 standards according to an Oliver-Pharr publication of 1992 and textbooks. The present work contributes to understanding the temperature dependence of phase-transitions under mechanical load, not only for aviation and space flights, which is important. The physical calculations use exclusively regressions and pure algebra (no iterations, no fittings, and no simulations) in a series of straightforward steps by correcting for unavoidable initial effects from the axis cuts of the linear branches from the above equation exhibiting sharp kink unsteadiness at the onset of phase transitions. The test loading curves are from Molybdenum and Al 7075 alloy. The valid published loading curves strictly follow the F<sub>N</sub> = k-h<sup>3/2</sup> relation. Full applied work, conversion work, and conversion work per depth unit show reliable overall comparable order of magnitude values at temperature increase by 150°C (Al 7075) and 980°C (Mo) when also considering different physical hardnesses and penetration depths. It turns out how much the normalized endothermic phase-transition energy decreases upon temperature increase. For the only known 1000°C indentation we provide reason that the presented loading curves changes are only to a minor degree caused by the thermal expansion. The results with Al 7075 up to 170°C are successfully compared. Al 7075 alloy is also checked by indentation with liquid nitrogen cooling (77 K). It gives two endothermic and one very prominent exothermic phase transition with particularly high normalized phase-transition energy. This indentation loading curve at liquid nitrogen temperature reveals epochal novelties. The energy requiring endothermic phase transitions (already seen at 20°C and above) at 77 K is shortly after the start of the second polymorph (sharply at 19.53 N loading force) followed by a strongly exothermic phase-transition by producing (that is losing) energy-content. Both processes at 77 K are totally unexpected. The produced energy per depth unit is much higher energy than the one required for the previous endothermic conversions. This exothermic phase-transition profits from the inability to provide further energy for the formation of the third polymorph as endothermic obtained at 70°C and above. That is only possible because the very cold crystal can no longer support endothermic events but supports exothermic ones. Both endothermic and exothermic phase-transitions at 77 K under load are unprecedented and were not expected before. While the energetic support at 77 K for endothermic processes under mechanical load is unusual but still understandable (there are also further means to produce lower temperatures). But strongly exothermicphase-transition under mechanical load for the production of new modification with negative energy content (less than the energy content of the ambient polymorph) at very low temperature is an epochal event here on earth. It leads to new global thinking and promises important new applications. The energy content of strongly exothermic transformed material is less than the thermodynamic standard zero energy-content on earth. And it can only be reached when there is no possibility left to produce an endothermic phase-transition. Such less than zero-energy-content materials should be isolated, using appropriate equipment. Their properties must be investigated by chemists, crystallographers, and physicists for cosmological reasons. It could be that such materials will require cooling despite their low energy content (higher stability!) and not survive at ambient temperatures and pressures on earth, but only because we do not know of such negative-energy-content materials with our arbitrary thermodynamic standard zeros on earth. At first one will have to study how far we can go up with temperature for keeping them stable. Thus, the apparently never before considered unprecedented result opens up new thinking for the search of new polymorphs that can, of course, not be reached by heating. Various further applications including cosmology and space flight explorations are profiting from it.
文摘Two experimental single crystal superalloys with 2% Cr and 4% Cr (mass fraction) were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Cr content on the microstructure, phase stability, tensile properties at 1100 °C and stress rupture properties at 1070 °C and 160 MPa of the single crystal superalloy were investigated. The results show that the size ofγ′ phase particles become small and uniform, and the cubic shape turns a little regular with the increase of Cr content. Theγ′ directional coarsening and rafting were observed in the 2% Cr and 4% Cr alloys after long term aging (LTA) at 1100 °C. The rafting rate ofγ′ phase increased with increasing Cr content. Needle-shaped topologically close packed (TCP) phases precipitated and grew along fixed direction in both alloys. The precipitating rate and volume fraction of TCP phases significantly increased with the increase of Cr content. The tensile property of the alloy increased and the stress rupture properties of the alloy decreased with the increase of Cr content at high temperature. The increase of Cr content increased the partition ratio of TCP forming elements, Re, W, and Mo, and the saturation degrees of these elements inγ phases increased. Therefore, the high temperature phase stability of the alloy decreased with the increase of Cr content.