期刊文献+
共找到9,214篇文章
< 1 2 250 >
每页显示 20 50 100
Fischer-Tropsch wax catalytic cracking for the production of low olefin and high octane number gasoline: Process optimization and heat effect calculation
1
作者 Mei Yang Gang Wang +2 位作者 Jian-Nian Han Cheng-Di Gao Jin-Sen Gao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1255-1265,共11页
To produce low olefin gasoline with high octane number by Fischer-Tropsch (F-T) wax fluid catalytic cracking (FCC) process, operating conditions optimization were carried out in the pilot-scale riser and turbulent flu... To produce low olefin gasoline with high octane number by Fischer-Tropsch (F-T) wax fluid catalytic cracking (FCC) process, operating conditions optimization were carried out in the pilot-scale riser and turbulent fluidized bed (TFB) FCC unit. The experimental results in the riser indicated that under the condition of low reaction temperature and regenerated catalyst temperature, large catalyst-to-oil weight ratio (C/O) and long reaction time, the gasoline olefin content could be reduced to 20.28 wt%, but there is large octane number loss owing to a great loss in high octane number olefin. Therefore, a novel FCC process using the TFB reactor was proposed to strengthen the aromatization reaction. The reaction performance of TFB reactor were investigated. The result demonstrated that the TFB reactor has more significant effect in reducing olefins and improving aromatics. At the expense of certain gasoline yield, the gasoline olefin content reduced to 23.70 wt%, aromatics content could increase to 26.79 wt% and the RON was up to 91.0. The comparison of reactor structure and fluidization demonstrated that the TFB reactor has higher catalyst bed density. The reaction heat and coke combustion heat was calculated indicating the feasibility of its industrial application of the TFB process. 展开更多
关键词 Fischer-Tropsch wax Catalytic cracking RISER TFB gasoline olefin Reaction heat
下载PDF
Recent Advances in the Rapid Detection and Performance Evaluation Methods of Detergent Additives for Gasoline
2
作者 Zhi Wanwan Li Na +2 位作者 Zhu Zhongpeng Li Yan Guo Xin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期165-176,共12页
Although detergent additives for gasoline have been widely commercialized,their formulas are often kept confidential and there is still no standardized method for quickly detecting the main active ingredients and eval... Although detergent additives for gasoline have been widely commercialized,their formulas are often kept confidential and there is still no standardized method for quickly detecting the main active ingredients and evaluating their effectiveness,which makes their regulation difficult.An overview of the current state of the development and application of detergent additives for gasoline in China and other regions,as well as a review of the rapid detection and performance evaluation methods available for analyzing detergent additives are given herein.The review focuses on the convenience,cost,efficiency,and feasibility of on-site detection and the evaluation of various methods,and also looks into future research directions,such as detecting and evaluating detergent additives in ethanol gasoline and with advanced engine technologies. 展开更多
关键词 gasolinE detergent additives DEPOSITS rapid detection performance evaluation
下载PDF
Molecular Characterization of C_(9+)Aromatics in Gasoline by Gas Chromatography-Mass Spectrometry
3
作者 Han Xu Song Chunxia +2 位作者 Qian Qin Li Changxiu Sun Xinyuan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期81-91,共11页
The comprehensive characterization of heavy aromatic hydrocarbons in gasoline is important to optimize the blending process and understand the correlation between aromatics content and engine particulate emissions.How... The comprehensive characterization of heavy aromatic hydrocarbons in gasoline is important to optimize the blending process and understand the correlation between aromatics content and engine particulate emissions.However,most current analysis methods can only provide the composition of C_(8)/C_(8-) aromatics.In this study,a simple and fast gas chromatography-mass spectrometry(GC-MS)method to identify and quantify C_(9+)aromatics in gasoline was developed.A selected ion monitoring model was employed to eliminate interference from non-aromatic compounds in the detection of target compounds,as well as that between target compounds with different molecular formulas.The identification of C_(9+)aromatics was based on the retention time of model compounds,combined with characteristic mass fragment ions,boiling points,and retention indexes.Seventy-nine C_(9)–C_(12)aromatic compounds were quantified based on the calibration of representative model compounds,and the method demonstrated good linearity,and high accuracy and precision.Furthermore,the developed methodology was successfully applied to the analysis of gasoline fractions from the reforming,pyrolysis,straight-run,delayed coking,and catalytic cracking processes,as well as commercial gasolines.The results showed that C_(9)aromatics were the predominant aromatics in all gasoline samples,followed by C10 aromatics.Alkylbenzenes such as C_(9)H_(12)and C_(10)H_(14)were the main components in the reforming,straight-run,delayed coking,and catalytic cracking gasoline fractions,as well as in the commercial gasolines,in which 1,2,4-trimethylbenzene and 3-ethyltoluene were dominant;in contrast,aromatics with higher degrees of unsaturation such as indene were the most abundant aromatics in the pyrolysis gasoline fraction. 展开更多
关键词 gasolinE C_(9+)aromatics heavy aromatics GC-MS
下载PDF
Effects of I-EGR and Pre-Injection on Performance of Gasoline Compression Ignition(GCI)at Low-Load Condition
4
作者 Binbin Yang Leilei Liu +3 位作者 Yan Zhang Jingyu Gong Fan Zhang Tiezhu Zhang 《Energy Engineering》 EI 2023年第10期2233-2250,共18页
Gasoline compression ignition(GCI)has been considered as a promising combustion concept to yield ultralow NOX and soot emissions while maintaining high thermal efficiency.However,how to improve the low-load performanc... Gasoline compression ignition(GCI)has been considered as a promising combustion concept to yield ultralow NOX and soot emissions while maintaining high thermal efficiency.However,how to improve the low-load performance becomes an urgent issue to be solved.In this paper,a GCI engine model was built to investigate the effects of internal EGR(i-EGR)and pre-injection on in-cylinder temperature,spatial concentration of mixture and OH radical,combustion and emission characteristics,and the control strategy for improving the combustion performance was further explored.The results showed an obvious expansion of the zone with an equivalence ratio between 0.8∼1.2 is realized by higher pre-injection ratios,and the s decreases with the increase of pre-injection ratio,but increases with the increase of i-EGR ratio.The high overlap among the equivalentmixture zone,the hightemperature zone,and the OH radical-rich zone can be achieved by higher i-EGR ratio coupled with higher preinjection ratio.By increasing the pre-injection ratio,the combustion efficiency increases first and then decreases,also achieves the peak value with a pre-injection ratio of 60%and is unaffected by i-EGR.The emissions of CO,HC,NOX,and soot can also be reduced to low levels by the combination of higher i-EGR ratios and a pre-injection ratio of 60%. 展开更多
关键词 gasoline compression ignition low-load condition internal EGR pre-injection combustion characteristics EMISSIONS
下载PDF
Lung Function Impairment among Gasoline Attendants: A Cross-Sectional Study
5
作者 Emmanuel Obazee Henry Aiwuyo +8 位作者 Anthony Kweki Tinuade Obazee Tinuade Obazee John Osarenkhoe Uche Agboje Beatrice Torere Nosakhare Ilerhunmwuwa Uchenna Amaechi Gabriel Alugba 《Open Journal of Ecology》 2023年第3期48-63,共16页
Background: Occupational health is an important consideration, especially for people that work in an environment with pollutants. Gasoline attendants are individuals that work in filling stations. They are constantly ... Background: Occupational health is an important consideration, especially for people that work in an environment with pollutants. Gasoline attendants are individuals that work in filling stations. They are constantly exposed to gasoline fumes and automobile engine products from vehicle exhaust. This increases the risk of acute and chronic respiratory diseases and carcinogenesis among them. The risk of health complications tends to increase with the duration of exposure. The study aimed to determine the proportion of gasoline attendants with lung function impairment. Methods and Materials: Two hundred and eight eligible participants were recruited for this study. A cross-sectional analytical study was carried out in Esan West local government area of Edo state, Nigeria. The study was carried out for a period of six months from December 2015 to May 2016. A questionnaire was used to obtain information on demographic characteristics, work history, mode of exposure and duration of exposure to petrol fumes. Lung function was assessed using a DTspiro spirometer (Model POP 10. Serial no 110843-005);also the anthropometric parameters of the respondent were measured. Statistical analysis was done using IBM SPSS version 20.0. Frequency and percentages were used to present categorical data. The mean and standard deviation of continuous variables were calculated and compared using the student’s t-test. The criteria of significant association were assumed for a p-value less than 0.05. Results: A total of one hundred and forty petrol pump attendants and one hundred and forty controls participated in this study. The mean age for petrol pump attendants was 24 ± 3.1 years and 23 ± 2.8 years for the control group. There were no significant differences in the gender distribution and anthropometric parameters as observed in this study. The lung impairment pattern observed in this study was obstructive in twelve (8.6%) gasoline pump attendants and restrictive pattern in thirty-nine (27.9%) gasoline pump attendants, while only four (2.9%) had an obstructive pattern and twelve (8.6%) had a restrictive pattern of lung impairment among the control group. This implies that a restrictive pattern was predominant. This study also observed that there was an increase in the number of gasoline pump attendants with declined lung function compared to the control group. Conclusion: Restrictive pattern of lung impairment was more predominant than the obstructive pattern among gasoline pump attendants. As a result, public health interventions should be instituted among these individuals, especially in developing countries. 展开更多
关键词 Lung Function Test Lung Impairment Lung Impairment Pattern gasoline Attendants Occupational Hazards Cross-Sectional Study
下载PDF
Lung Function Impairment among Gasoline Attendants: A Cross-Sectional Study
6
作者 Emmanuel Obazee Henry Aiwuyo +8 位作者 Anthony Kweki Tinuade Obazee Tinuade Obazee John Osarenkhoe Uche Agboje Beatrice Torere Nosakhare Ilerhunmwuwa Uchenna Amaechi Gabriel Alugba 《Open Journal of Respiratory Diseases》 2023年第3期48-63,共16页
Background: Occupational health is an important consideration, especially for people that work in an environment with pollutants. Gasoline attendants are individuals that work in filling stations. They are constantly ... Background: Occupational health is an important consideration, especially for people that work in an environment with pollutants. Gasoline attendants are individuals that work in filling stations. They are constantly exposed to gasoline fumes and automobile engine products from vehicle exhaust. This increases the risk of acute and chronic respiratory diseases and carcinogenesis among them. The risk of health complications tends to increase with the duration of exposure. The study aimed to determine the proportion of gasoline attendants with lung function impairment. Methods and Materials: Two hundred and eight eligible participants were recruited for this study. A cross-sectional analytical study was carried out in Esan West local government area of Edo state, Nigeria. The study was carried out for a period of six months from December 2015 to May 2016. A questionnaire was used to obtain information on demographic characteristics, work history, mode of exposure and duration of exposure to petrol fumes. Lung function was assessed using a DTspiro spirometer (Model POP 10. Serial no 110843-005);also the anthropometric parameters of the respondent were measured. Statistical analysis was done using IBM SPSS version 20.0. Frequency and percentages were used to present categorical data. The mean and standard deviation of continuous variables were calculated and compared using the student’s t-test. The criteria of significant association were assumed for a p-value less than 0.05. Results: A total of one hundred and forty petrol pump attendants and one hundred and forty controls participated in this study. The mean age for petrol pump attendants was 24 ± 3.1 years and 23 ± 2.8 years for the control group. There were no significant differences in the gender distribution and anthropometric parameters as observed in this study. The lung impairment pattern observed in this study was obstructive in twelve (8.6%) gasoline pump attendants and restrictive pattern in thirty-nine (27.9%) gasoline pump attendants, while only four (2.9%) had an obstructive pattern and twelve (8.6%) had a restrictive pattern of lung impairment among the control group. This implies that a restrictive pattern was predominant. This study also observed that there was an increase in the number of gasoline pump attendants with declined lung function compared to the control group. Conclusion: Restrictive pattern of lung impairment was more predominant than the obstructive pattern among gasoline pump attendants. As a result, public health interventions should be instituted among these individuals, especially in developing countries. 展开更多
关键词 Lung Function Test Lung Impairment Lung Impairment Pattern gasoline Attendants Occupational Hazards Cross-Sectional Study
下载PDF
STUDY ON INJECTION AND IGNITION CONTROL OF GASOLINE ENGINE BASED ON BP NEURAL NETWORK 被引量:13
7
作者 Zhang Cuiping Yang QingfoCollege of Mechanical Engineering,Taiyuan University of Technology,Taiyuan 030024, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第4期441-444,共4页
According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP... According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP network algorithm. The optimum ignition advance angleand fuel injection pulse band of engine under different speed and load are tested for the samplestraining network, focusing on the study of the design method and procedure of BP neural network inengine injection and ignition control. The results show that artificial neural network technique canmeet the requirement of engine injection and ignition control. The method is feasible for improvingpower performance, economy and emission performances of gasoline engine. 展开更多
关键词 Neural network BP algorithm gasoline engine CONTROL
下载PDF
Efficient desulfurization of gasoline fuel using ionic liquid extraction as a complementary process to adsorptive desulfurization 被引量:8
8
作者 N.Farzin Nejad A.A.Miran Beigi 《Petroleum Science》 SCIE CAS CSCD 2015年第2期330-339,共10页
The extractive desulfurization of a model gaso- line containing several alkyl thiols and aromatic thiophenic compounds was investigated using two imidazolium-based ionic liquids (ILs), 1-butyl-3-methylimidazolium te... The extractive desulfurization of a model gaso- line containing several alkyl thiols and aromatic thiophenic compounds was investigated using two imidazolium-based ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrachloroaluminate, and 1-octyl-3-methylimidazolium te- trafluoroborate, as extractants. A fractional factorial design of experiments was employed to evaluate the effects and possible interactions of several process variables. Analysis of variance tests indicated that the number of extraction steps and the IL/gasoline volume ratio were of statistically highly significant, but none of the interactions were significant. The results showed that the desulfurization efficiency of the model gasoline by the ILs could reach 95.2 % under the optimal conditions. The optimized conditions were applied to study the extraction of thiophenic compounds in model gasoline and several real gasoline samples; the following order was observed in their separation: benzothio- phenc 〉 thiophcne 〉 3-methylthiophene 〉 2-methylthiophene, with 96.1% removal efficiency for benzothiophene. The IL extraction was successfully applied as a complementary process to the adsorptive desulfurization with acti- vated Raney nickel and acetonitrile solvent. The results indicated that the adsorptive process combined with IL extraction could provide high efficiency and selectivity, which can be regarded as a promising energy efficient desulfurization strategy for production of low-sulfur gasoline. 展开更多
关键词 Liquid-liquid extraction Experimentaldesign Adsorptive desulfurization gasolinE Thiopheniccompounds
下载PDF
Fabrication of a nano-sized ZSM-5 zeolite with intercrystalline mesopores for conversion of methanol to gasoline 被引量:5
9
作者 Tingjun Fu Jiangwei Chang +1 位作者 Juan Shao Zhong Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期139-146,共8页
Carbon deposition during methanol to hydrocarbons leads to the quick deactivation of ZSM-5 catalyst and it is one of the major problems for this technology. Decreasing the crystal size or introducing mesopores into ZS... Carbon deposition during methanol to hydrocarbons leads to the quick deactivation of ZSM-5 catalyst and it is one of the major problems for this technology. Decreasing the crystal size or introducing mesopores into ZSM-5 zeolites can improve its diffusion property and decrease the coke formation. In this paper, nano-sized ZSM-5 zeolite with intercrystalline mesopores combining the mesoporous and nano sized structure was fabricated. For comparison, the mesoporous ZSM-5 and nano-sized ZSM-5 were also prepared. These catalyst samples were characterized by XRD, BET, NH3-TPD, TEM, Py-IR and TG techniques and used on the conversion of methanol to gasoline in a fixed-bed reactor at T=405 degrees C, WHSV =4.74 h(-1) and P=1.0 MPa. It was found that the external surface area of the nano-sized ZSM-5 zeolite with intercrystalline mesopores reached 104 m(2)/g, larger than that of mesoporous ZSM-5 (66 m(2)/g) and nano sized ZSM-5 (76 m(2)/g). Catalytic lifetime of the nano-sized ZSM-5 zeolite with intercrystalline mesopores was 93 h, which was only longer than that of mesoporous ZSM-5 (86 h), but shorter than that of nano sized ZSM-5 (104 h). Strong acidity promoted the coke formation and thus decreased the catalytic lifetime of the nano-sized ZSM-5 zeolite with intercrystalline mesopores though it presented large external surface that could improve the diffusion property. The special zeolite catalyst was further dealuminated to decrease the strong acidity. After this, its coke formation rate was slowed and catalytic lifetime was prolonged to 106 h because of the large external surface area and decreased weak acidity. This special structural zeolite is a potential catalyst for methanol to gasoline reaction. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 ZSM-5 Crystal size MESOPORE ACIDITY Methanol to gasoline
下载PDF
An Experimental Investigation on Low Load Combustion Stability and Cold-Firing Capacity of a Gasoline Compression Ignition Engine 被引量:4
10
作者 Lei Zhou Jianxiong Hua +1 位作者 Haiqiao Wei Yiyong Han 《Engineering》 SCIE EI 2019年第3期558-567,共10页
Gasoline compression ignition (GCI) is one of the most promising combustion concepts to maintain low pollutant emissions and high efficiency. However, low load combustion stability and firing in cold-start operations ... Gasoline compression ignition (GCI) is one of the most promising combustion concepts to maintain low pollutant emissions and high efficiency. However, low load combustion stability and firing in cold-start operations are two major challenges for GCI combustion. Strategies including negative valve overlap (NVO), advanced injection strategies, fuel reforming, and intake preheating have been proposed in order to solve these difficulties;however, the cold start is still an obstacle. The objective of this work is to study effective methods to achieve GCI engine cold start-up. This work combines NVO, in-cylinder fuel reforming, and intake preheating to achieve quick firing under cold-start conditions and the subsequent warmup conditions. The results show that start of injection (SOI) during the intake stroke yields the best fuel economy, and injection during the compression stroke has the potential to extend the low load limit. Furthermore, SOI during the NVO period grants the ability to operate under engine conditions with cold intake air and coolant. With highly reactive products made by in-cylinder fuel reforming and fast heat accumulation in the combustion chamber, the NVO injection strategy is highly appropriate for GCI firing. An additional assisted technical method, such as intake preheating, is required to ignite the first firing cycle for a cold-start process. With the combination of NVO, in-cylinder fuel reforming, and intake preheating, the GCI engine successfully started within five combustion cycles in the experiment. After the firing process, the engine could stably operate without further intake preheating;thus, this method is appropriate for engine cold-start and warm-up. 展开更多
关键词 gasolinE compression IGNITION COLD START WARM-UP condition Fuel-injection strategy Combustion stability
下载PDF
Acidity effects of Hβ zeolite on olefin alkylation of thiophenic sulfur in gasoline 被引量:4
11
作者 Zekai Zhang Dong Liu +3 位作者 Xiangxue Zhu Haiwei Yu Shenglin Liu Longya Xu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第1期45-50,共6页
Olefin alkylation of thiophenic sulfur process was carried out in model gasoline, using Hβ zeolites with different Si/Al2 ratios as catalysts. In particular, the influence of acid properties of Hβ zeolites on its ca... Olefin alkylation of thiophenic sulfur process was carried out in model gasoline, using Hβ zeolites with different Si/Al2 ratios as catalysts. In particular, the influence of acid properties of Hβ zeolites on its catalytic ability for the thiophene alkylation, xylene alkylation and hexene oligomerization was investigated. The results showed that the acidity of the Hβ zeolite was increased with the decrease of Si/Al2 ratio, but its catalytic ability was not always increased. In fact, it reached the maximal catalytic ability at Si/Al2 ratio of 66, and under the reaction conditions of 60 ℃, 1.5 MPa, WHSV 3.0 h^-1 and time on stream 2 h. At the ratio, the conversion of thiophene, xylene, and oligomerized hexene were 96.6%, 2.7% and 2.8%, respectively. An optimal Si/Al2 ratio exists for the catalytic performance of Hβ zeolite. By investigating the coke deposition of the used Hβ zeolite catalysts, it has been found that the optimal Si/Al2 ratio is attributed to the combined effect of the carbocation activation capability and the hydrogen transformation capability of the Hβ zeolite catalyst. 展开更多
关键词 DESULFURIZATION ALKYLATION ACIDITY gasolinE
下载PDF
Investigation of ZSM-5/MCM-41 Composite Molecular Sieve for Reducing Olefin Content of FCC Gasoline 被引量:5
12
作者 Ji Dekun~(1,2) Li Shuyuan~1 +2 位作者 Ding Fuchen~2 Chi Yaoling~2 (1.Chemical Engineering School,China University of Petroleum(Beijing),Beijing 102249 2.Department of Chemical Engineering,Beijing Institute of Petrochemical Technology) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2009年第4期10-17,共8页
ZSM-5/MCM-41 composite molecular sieve was prepared by the nano-assembling method.The ZSM-5 molecular sieve,the MCM-41 molecular sieve,the ZSM-5/MCM-41 mechanical mixture and the ZSM-5/MCM-41 composite molecular sieve... ZSM-5/MCM-41 composite molecular sieve was prepared by the nano-assembling method.The ZSM-5 molecular sieve,the MCM-41 molecular sieve,the ZSM-5/MCM-41 mechanical mixture and the ZSM-5/MCM-41 composite molecular sieve were characterized by X-ray powder diffractometry,N<sub>2</sub> adsorption isotherms,temperature programmed desorption of ammonia and scanning electron microscopy and their properties were analyzed.Using FCC gasoline as the feed,activities of different molecular sieves for reducing olefin content were investigated in a continuous high-pressure micro-reactor unit under the following conditions:a reaction temperature of 400℃,a reaction time of 2 h,a weight hourly space velocity of 3h<sup>-1</sup>,and a reaction pressure of 2.0 MPa.The results showed that the HMCM-41 molecular sieve had low reaction performance,and the HZSM-5 molecular sieve demonstrated high aromatization activity,while the ZSM-5/MCM- 41 composite molecular sieve exhibited a best olefin-reducing performance because of its high isomerization activity and moderate aromatization activity.With a largest olefin-reducmg capability and a reasonable distribution of products,the composite molecular sieve was more suitable for FCC gasoline upgrading compared to other three catalysts. 展开更多
关键词 ZSM-5 MCM-41 composite molecular SIEVE FCC gasolin
下载PDF
A convenient preparation of ethoxymethoxymethane and its effect on the solubility of methanol/gasoline blends 被引量:4
13
作者 Shan Jian Cao Ai You Hao Hong Yuan Sun Tao Sun 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第8期973-976,共4页
Ethoxymethxoymethane (EMM) was conveniently prepared by acetalization of aqueous formaldehyde with methanol andethanol in a batch reactive distillation mode using a cation-exchange resin catalyst for the first time.... Ethoxymethxoymethane (EMM) was conveniently prepared by acetalization of aqueous formaldehyde with methanol andethanol in a batch reactive distillation mode using a cation-exchange resin catalyst for the first time. EMM was found tO be asignificant cosolvent of methano1/gasoline blends, ? 2009 Ai You Hao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All fights reserved. 展开更多
关键词 Ethoxymethoxymethane Cation-exchange resin catalyst Batch reactive distillation Methano1/gasoline COSOLVENT
下载PDF
The tuning of pore structures and acidity for Zn/Al layered double hydroxides:The application on selective hydrodesulfurization for FCC gasoline 被引量:3
14
作者 Tinghai Wang Jingfeng Li +4 位作者 Yi Su Chenchen Wang Yuan Gao Lingjun Chou Wenjun Yao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第4期432-440,共9页
Co–Mo catalysts applied on the hydrodesulfurization(HDS) for FCC gasoline were prepared with Zn–Al layered double hydroxides(LDHs) to improve their performances,and the effects of pore structures and acidity on ... Co–Mo catalysts applied on the hydrodesulfurization(HDS) for FCC gasoline were prepared with Zn–Al layered double hydroxides(LDHs) to improve their performances,and the effects of pore structures and acidity on HDS performances were studied in detail. A series of Zn–Al/LDHs samples with different pore structures and acidities are synthesized on the bases of co-precipitation of OH-,CO2-,Al3+,and Zn2+. The neutralization p H is a main factor to affect the pore structures and acidity of Zn–Al/LDHs,and a series of Zn–Al/LDHs with different pore structures and acidities are obtained. Based on the representative samples with different specific surface areas(SBET) and acidities,three Co Mo/LDHs catalysts were prepared,and their HDS performances were compared with traditional Co Mo/Al2O3 catalysts. The results indicated that catalysts prepared with high SBETpossessed high HDS activity,and Br?nsted acid sites could reduce the thiol content in the product to some extent. All the three catalysts prepared with LDHs displayed little lower HDS activity but higher selectivity than Co Mo/Al2O3,and could restrain the reactions of re-combination between olefin and H2 S which could be due to the existence of Br?nsted acid sites. 展开更多
关键词 Layered double hydroxides ACIDITY Pore structures FCC gasoline HYDRODESULFURIZATION
下载PDF
A scenario-based clean gasoline production strategy for China National Petroleum Corporation 被引量:4
15
作者 Liu Haiyan Yu Jianning +2 位作者 Fan Yu Shi Gang Bao Xiaojun 《Petroleum Science》 SCIE CAS CSCD 2008年第3期285-294,共10页
Facing increasingly strict environmental regulations on transportation fuels, China National Petroleum Corp. (CNPC), the second largest supplier of petroleum products in China, needs to upgrade its transportation fu... Facing increasingly strict environmental regulations on transportation fuels, China National Petroleum Corp. (CNPC), the second largest supplier of petroleum products in China, needs to upgrade its transportation fuels. Using the scenario-based analysis method, this paper analyzes how the emission related properties, including antiknock index, and sulfur, olefin, benzene and aromatics contents of gasoline produced by CNPC, vary with the change in the configuration of gasoline production units in the future 5-15 years. The results showed that for CNPC to upgrade its gasoline, the share of fluid catalytic cracking (FCC) naphtha must be reduced, but just increasing reformate or alkylate and isomerate will result in excessive increase in benzene and aromatics contents or a great loss of gasoline octane number. Therefore, CNPC should suitably control the capacity of its FCC units and increase the capacity of reformer, alkylation and isomerization units. Most importantly, CNPC should dramatically expand the capacity of its hydrotreating or non-hydrotreating gasoline upgrading units to decrease the olefin and sulfur contents in FCC gasoline that takes a dominant share of about 80% in the gasoline pool of China. 展开更多
关键词 China National Petroleum Corporation scenario analysis clean gasoline production
下载PDF
Selective hydrocracking of light cycle oil into high-octane gasoline over bi-functional catalysts 被引量:4
16
作者 Zhengkai Cao Xia Zhang +4 位作者 Chunming Xu Xinlu Huang Ziming Wu Chong Peng Aijun Duan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期41-50,I0002,共11页
Light cycle oil(LCO) with high content of poly-aromatics was difficult to upgrade and convert,which had hindered upgrading fuel quality to meet with the standard of automotive diesel for the purpose of sustainable dev... Light cycle oil(LCO) with high content of poly-aromatics was difficult to upgrade and convert,which had hindered upgrading fuel quality to meet with the standard of automotive diesel for the purpose of sustainable development.The hydrocracking behaviors of typical aromatics in LCO of naphthalene and tetralin were investigated over NiMo and CoMo catalysts.Several characterization methods including N2-adsoprtion and desorption,ammonia temperature-programmed desorption(NH3-TPD),Pyridine infrared spectroscopy(Py-IR),CO infrared spectroscopy(CO-IR),Raman and X-ray photoelectron spectroscopy(XPS) were applied to determine the properties of different catalysts.The results showed that CoMo catalyst with high concentration of S-edges could hydrosaturate more naphthalene to tetralin but exhibit lower yield of high-value light aromatics(carbon numbers less than 10) than NiMo catalyst.NiMo catalyst with high concentration of Mo-edges also presented a higher selectivity of converting naphthalene into cyclanes than CoMo catalyst.Subsequently,the naphthalene and LCO hydrocracking performances were also investigated over different catalysts systems.The activity evaluation and kinetic analysis results showed that the naphthalene hydrocracking conversion and the yield of light aromatics for CoMo-AY/NiMo-AY grading catalysts were higher than NiMo-AY/CoMo-AY grading catalysts at same condition.A stepwise reaction principle was proposed to explain the high efficiency of CoMo-AY/NiMoAY grading catalysts.Finally,the LCO hydrocracking evaluation results confirmed that CoMo-AY/NiMoAY catalysts grading system with low carbon deposition and high stability could remain high percentage of active phases,which was more efficient to convert LCO to high-octane gasoline. 展开更多
关键词 HYDROCRACKING Conversion SELECTIVITY Catalysts grading High-octane gasoline
下载PDF
Study on biomass catalytic pyrolysis for production of bio-gasoline by on-line FTIR 被引量:9
17
作者 Chang Bo Lu Jian Zhong Yao +1 位作者 Wei Gang Lin Wen Li Song 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第4期445-448,共4页
The pyrolysis of biomass is a promising way for production of bio-gasoline if the stability and quality problems of the bio-crudeoil can be solved by catalytic cracking and reforming. In this paper, an on-line infrare... The pyrolysis of biomass is a promising way for production of bio-gasoline if the stability and quality problems of the bio-crudeoil can be solved by catalytic cracking and reforming. In this paper, an on-line infrared spectrum was used to study the characteristics of catalytic pyrolysis with the following preliminary results. The removal of C=O of organic acid is more difficult than that of aldehydes and ketones. HUSY/γ-Al2O3 and REY/γ-Al2O3 catalysts exhibited better deoxygenating activities while HZSM-5/γ-Al2O3 catalyst exhibited preferred selectivities for production of iso-alkanes and aromatics. Finally, possible mechanisms of biomass catalytic pyrolysis are discussed as well. 展开更多
关键词 BIOMASS PYROLYSIS Catalyst Bio-gasoline
下载PDF
Introduction of table sugar as a soft second template in ZSM-5 nanocatalyst and its effect on product distribution and catalyst lifetime in methanol to gasoline conversion 被引量:2
18
作者 Peyman Noor Mohammadreza Khanmohammadi +2 位作者 Behrooz Roozbehani Fereydoon Yaripour Amir Bagheri Garmarudi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期582-590,共9页
Methanol to gasoline reaction was investigated on two prepared ZSM-5 catalysts. The first one was a conventional catalyst denoted as ZSM-5(C) and the other was a hierarchical catalyst-ZSM-5(S) which was prepared b... Methanol to gasoline reaction was investigated on two prepared ZSM-5 catalysts. The first one was a conventional catalyst denoted as ZSM-5(C) and the other was a hierarchical catalyst-ZSM-5(S) which was prepared by incorporation of table sugar in catalyst gel during the synthesis procedure. The catalysts were characterized by FTIR, XRD, FE-SEM, N2 adsorption-desorption, NH3-TPD and TGA analytical technics. The proposed material showed pore modification as well as acidity moderating properties in ZSM-5 catalyst. The methanol to gasoline reaction was conducted in a fixed bed reactor with a WHSV of 1.5 h-1.Methanol conversions, gasoline yield and selectivity in production for the synthesized catalysts were determined by gas chromatography method. The sugar modified catalyst converted more methanol than the conventional one and an enhancement in catalyst’s life time was observed. The selectivity to aromatics and durene were reduced compared to the conventional catalyst, so the gasoline quality was also further improved. The coking rate of catalysts was calculated employing TGA method. A reduction in coking rate and an increase in coke capacity of the modified catalyst were observed. 展开更多
关键词 MTG ZSM-5 catalyst Methanol to gasoline Methanol conversion DEACTIVATION
下载PDF
Color stability of FCC gasoline 被引量:2
19
作者 Song Lechun Li Peibo +4 位作者 Lu Liang Chen Jihai Zhou Yulu Xiang Yuzhi Xia Daohong 《Petroleum Science》 SCIE CAS CSCD 2012年第2期257-261,共5页
The color changes of one representative FCC gasoline were studied. The red substance in the FCC gasoline was concentrated and separated by chromatography and analyzed by elemental analysis and gas chromatography-mass ... The color changes of one representative FCC gasoline were studied. The red substance in the FCC gasoline was concentrated and separated by chromatography and analyzed by elemental analysis and gas chromatography-mass spectrometry (GC-MS). The main components of the red substance were found to be aromatic amines. Complexes formed from quinones and aromatic amines are the reason why gasoline being red, and acids can destroy the complex by reaction with aromatic amines leading to decoloration of red gasoline. A mechanism for the color change of gasoline is proposed. 展开更多
关键词 gasolinE color stability PHENOL basic nitrogen compounds
下载PDF
Comparative Effect of Gasoline Formulations on Fuel Economy and Emissions of Modern GDI Engine 被引量:3
20
作者 Han Lu Tian Huayu +1 位作者 Li Bo Guo Xin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2020年第4期10-20,共11页
In this paper the effect of gasoline formulations on fuel economy and emissions were studied,aiming at exploring the optimized fuel formulation that can alleviate energy crisis and greenhouse effect to some extent.Fiv... In this paper the effect of gasoline formulations on fuel economy and emissions were studied,aiming at exploring the optimized fuel formulation that can alleviate energy crisis and greenhouse effect to some extent.Five gasoline blends with same research octane number(RON)were designed and tested on a calibrated gasoline direct injection(GDI)engine under the mapped characteristic conditions.Test results illustrate that the optimized fuel formulation shows good superiority in fuel economy,and reduces carbon dioxide(CO2)emissions at low engine speeds with medium loads.The brake-specific fuel consumption(BSFC)decreased by a maximum value of 3.26%mainly because of the improvement of combustion velocity and the optimization of low heating value.The optimized fuel formulation simultaneously increases total hydrocarbon(THC)emissions.Nevertheless,it also markedly reduces CO2 emissions,reaching the maximum value of 2.34%.The research results can be applied practically by refineries to reduce the CO2 emissions and to alleviate the greenhouse effect. 展开更多
关键词 gasoline formulations aromatic hydrocarbons fuel economy GDI engine
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部