In congested urban roads, cars must stop at intersections because of city traffic lights. As a result, pedestri- ans and traffic police personnel are exposed to pollutants emanating from the tailpipe of various vehicl...In congested urban roads, cars must stop at intersections because of city traffic lights. As a result, pedestri- ans and traffic police personnel are exposed to pollutants emanating from the tailpipe of various vehicles at such city trafficjunctions. In this study, various gasoline- and diesel-fueled cars complying with differ- ent emission standards were tested for their emissions in simulated city traffic junction conditions. The engine exhaust from these cars was subjected to physicochemical characterization at different engine speeds under no-load conditions. These engine conditions were chosen because the cars idle at differ- ent engine speeds at a city traffic junction. Gravimetric and real-time measurements were performed for the tailpipe exhaust sampled from these vehicles. Exhaust particles were collected on 47 mm diameter quartz filter papers and subjected to gravimetric analysis for determining the total particulate mass (TPM) and trace metals while the engines were operated at two different engine idling speeds, 1500 rpm (representing low idling) and 2500 rpm (representing high idling). At similar engine operating condi- tions, TPM and trace metals were lower for the exhaust from gasoline engines compared to the exhaust from diesel engines. Real-time measurements were performed for particle-bound poly-aromatic hydro- carbons (PAHs), particle number and size distribution, regulated gaseous emissions and smoke opacity of the exhaust at four different engine speeds, 1500, 2000, 2500, and 3000 rpm. Particle-bound PAHs showed a decreasing trend for the vehicles that complied with stricter vehicular emission standards. Higher particle peak number concentrations were observed for diesel exhausts compared to the results for gasoline exhaust. Regulated gaseous emissions were also comoared.展开更多
Noise,vibration and harshness(NVH)problems in vehicle engineering are always challenging in both traditional vehicles and intelligent vehicles.Although high accuracy manufacturing,modern structural roads and advanced ...Noise,vibration and harshness(NVH)problems in vehicle engineering are always challenging in both traditional vehicles and intelligent vehicles.Although high accuracy manufacturing,modern structural roads and advanced suspension technology have already significantly reduced NVH problems and their impacts;off-road condition,obstacles and extreme operating condition could still trigger NVH problems unexpectedly.This paper proposes a vehicular electronic image stabilization(EIS)system to solve the vibration problem of the camera and ensure the environment perceptive function of vehicles.Firstly,feature point detection and matching based on an oriented FAST and rotated BRIEF(ORB)algorithm are implemented to match images in the process of EIS.Furthermore,a novel improved random sampling consensus algorithm(i-RANSAC)is proposed to eliminate mismatched feature points and increase the matching accuracy significantly.And an adaptive Kalman filter(AKF)is applied to improve the adaptability of the vehicular EIS.Finally,an experimental platform based on a gasoline model car was established to validate its performance.The experimental results show that the proposed EIS system can satisfy vehicular performance requirements even under off-road condition with obvious obstacles.展开更多
Significant advances in battery technology are creating a viable marketspace for battery powered passenger vehicles.Climate change and concerns over reliable supplies of hydrocarbons are aiding in the focus on electri...Significant advances in battery technology are creating a viable marketspace for battery powered passenger vehicles.Climate change and concerns over reliable supplies of hydrocarbons are aiding in the focus on electric vehicles.Consumers can be influenced by marketing and emotion resulting in behaviors that may not be in line with their stated objectives.Although sales of electric vehicles are accelerating,it may not be clear that purchasing an electric vehicle is advantageous from an economic or environmental perspective.A technoeconomic analysis of electric vehicles comparing them against hybrids,gasoline and diesel vehicles is presented.The results show that the complexity of electrical power supply,infrastructure requirements and full life cycle concerns show that electric vehicles have a place in the future but that ongoing improvements will be required for them to be clearly the best choice for a given situation.展开更多
文摘In congested urban roads, cars must stop at intersections because of city traffic lights. As a result, pedestri- ans and traffic police personnel are exposed to pollutants emanating from the tailpipe of various vehicles at such city trafficjunctions. In this study, various gasoline- and diesel-fueled cars complying with differ- ent emission standards were tested for their emissions in simulated city traffic junction conditions. The engine exhaust from these cars was subjected to physicochemical characterization at different engine speeds under no-load conditions. These engine conditions were chosen because the cars idle at differ- ent engine speeds at a city traffic junction. Gravimetric and real-time measurements were performed for the tailpipe exhaust sampled from these vehicles. Exhaust particles were collected on 47 mm diameter quartz filter papers and subjected to gravimetric analysis for determining the total particulate mass (TPM) and trace metals while the engines were operated at two different engine idling speeds, 1500 rpm (representing low idling) and 2500 rpm (representing high idling). At similar engine operating condi- tions, TPM and trace metals were lower for the exhaust from gasoline engines compared to the exhaust from diesel engines. Real-time measurements were performed for particle-bound poly-aromatic hydro- carbons (PAHs), particle number and size distribution, regulated gaseous emissions and smoke opacity of the exhaust at four different engine speeds, 1500, 2000, 2500, and 3000 rpm. Particle-bound PAHs showed a decreasing trend for the vehicles that complied with stricter vehicular emission standards. Higher particle peak number concentrations were observed for diesel exhausts compared to the results for gasoline exhaust. Regulated gaseous emissions were also comoared.
基金National Natural Science Foundation of China(Grant Nos.52072072,52025121 and 51605087).
文摘Noise,vibration and harshness(NVH)problems in vehicle engineering are always challenging in both traditional vehicles and intelligent vehicles.Although high accuracy manufacturing,modern structural roads and advanced suspension technology have already significantly reduced NVH problems and their impacts;off-road condition,obstacles and extreme operating condition could still trigger NVH problems unexpectedly.This paper proposes a vehicular electronic image stabilization(EIS)system to solve the vibration problem of the camera and ensure the environment perceptive function of vehicles.Firstly,feature point detection and matching based on an oriented FAST and rotated BRIEF(ORB)algorithm are implemented to match images in the process of EIS.Furthermore,a novel improved random sampling consensus algorithm(i-RANSAC)is proposed to eliminate mismatched feature points and increase the matching accuracy significantly.And an adaptive Kalman filter(AKF)is applied to improve the adaptability of the vehicular EIS.Finally,an experimental platform based on a gasoline model car was established to validate its performance.The experimental results show that the proposed EIS system can satisfy vehicular performance requirements even under off-road condition with obvious obstacles.
文摘Significant advances in battery technology are creating a viable marketspace for battery powered passenger vehicles.Climate change and concerns over reliable supplies of hydrocarbons are aiding in the focus on electric vehicles.Consumers can be influenced by marketing and emotion resulting in behaviors that may not be in line with their stated objectives.Although sales of electric vehicles are accelerating,it may not be clear that purchasing an electric vehicle is advantageous from an economic or environmental perspective.A technoeconomic analysis of electric vehicles comparing them against hybrids,gasoline and diesel vehicles is presented.The results show that the complexity of electrical power supply,infrastructure requirements and full life cycle concerns show that electric vehicles have a place in the future but that ongoing improvements will be required for them to be clearly the best choice for a given situation.