期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Development of Light Cycle Oil(LCO) Hydrocracking Technology over a Commercial W-Ni Based Catalyst 被引量:9
1
作者 Peng Chong Yang Xuejing +4 位作者 Fang Xiangchen Huang Xinlu Cheng Zhenmin Zeng Ronghui Guo Rong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2015年第4期30-36,共7页
Because of its high density and low cetane number, the light cycle oil(LCO) containing heavy aromatics(60%—80%) can hardly be transformed through the conventional hydro-upgrading technology. In this report, a novel L... Because of its high density and low cetane number, the light cycle oil(LCO) containing heavy aromatics(60%—80%) can hardly be transformed through the conventional hydro-upgrading technology. In this report, a novel LCO hydrocracking technology(FD2G) was proposed for the utilization of LCO to manufacture high value-added products. Through the ingenious combination of hydroprocessing catalyst and the hydrocracking process, the high octane gasoline and the ultra-low sulfur diesel(ULSD) blendstocks were produced simultaneously. The influence of catalyst type, reaction temperature, pressure, respectively, on the research octane number(RON) of produced gasoline was studied in a fixed bed hydrogenation reactor. It indicated that high reaction temperature and medium pressure would favor the production of highoctane gasoline through the conversion of bi-aromatic and tri-aromatic hydrocarbons. The typical results of FD2 G technology on commercial units showed that it could produce clean diesel with a sulfur content of less than 10 μg/g and clean gasoline with a research octane number(RON) of up to 92. It would be contributed to the achievement of the maximum profit of a refinery, the FD2 G technology could provide a higher economic efficiency than the other diesel quality upgrading technology under the current gasoline and diesel price system. 展开更多
关键词 LCO hydrocracking high octane gasoline ULSD aromatics
下载PDF
LTAG Technology Passed Appraisal 被引量:1
2
《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2015年第4期54-54,共1页
Recently the LTAG technology combining selective hydro-saturation of LCO with selective catalytic cracking technology for producing high-octane gasoline or light aromatic hydrocarbons has passed technical appraisal.
关键词 octane gasoline saturation hydrocarbons cracking producing appraisal passed inferior aromatic
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部