ZSM-5/MCM-41 composite molecular sieve was prepared by the nano-assembling method.The ZSM-5 molecular sieve,the MCM-41 molecular sieve,the ZSM-5/MCM-41 mechanical mixture and the ZSM-5/MCM-41 composite molecular sieve...ZSM-5/MCM-41 composite molecular sieve was prepared by the nano-assembling method.The ZSM-5 molecular sieve,the MCM-41 molecular sieve,the ZSM-5/MCM-41 mechanical mixture and the ZSM-5/MCM-41 composite molecular sieve were characterized by X-ray powder diffractometry,N_2 adsorption isotherms,temperature programmed desorption of ammonia and scanning electron microscopy and their properties were analyzed.Using FCC gasoline as the feed,activities of different molecular sieves for reducing olefin content were investigated in a continuous high-pressure micro-reactor unit under the following conditions:a reaction temperature of 400℃,a reaction time of 2 h,a weight hourly space velocity of 3h^(-1),and a reaction pressure of 2.0 MPa.The results showed that the HMCM-41 molecular sieve had low reaction performance,and the HZSM-5 molecular sieve demonstrated high aromatization activity,while the ZSM-5/MCM- 41 composite molecular sieve exhibited a best olefin-reducing performance because of its high isomerization activity and moderate aromatization activity.With a largest olefin-reducmg capability and a reasonable distribution of products,the composite molecular sieve was more suitable for FCC gasoline upgrading compared to other three catalysts.展开更多
In order to meet the urgent need for reducing olefin content in cracked naphtha, the influence of feedstock characteristics on the olefin content was discussed. The different types and performance of catalysts develop...In order to meet the urgent need for reducing olefin content in cracked naphtha, the influence of feedstock characteristics on the olefin content was discussed. The different types and performance of catalysts developed by RIPP were introduced. Moreover, some effective operation approaches in commercial units were presented to serve as a reference to the refiners for catalyst selection.展开更多
In this paper, the effect of hydrogen reduction of silver ions on the performance and structure of new solid polymer electrolyte polyetherimide (PEI)/Pebax2533 (Polynylonl2/tetramethylene oxide block copolymer, PA1...In this paper, the effect of hydrogen reduction of silver ions on the performance and structure of new solid polymer electrolyte polyetherimide (PEI)/Pebax2533 (Polynylonl2/tetramethylene oxide block copolymer, PA12-PTMO)/AgBF4 composite membranes is investigated. For PEI/Pebax2533/AgBF4 composite membranesprepared with dillerent AgBF4 concentration, the permeances of propylene and ethylene increase with the increase of AgBF4 concentration due to the carrier-facilitated transport, resulting in a high selectivity. But for propyl- ene/propane mixture, the mixed-gas selectivity is lower than its ideal selectivity. The hydrogen reduction strongly influences the membrane performance, which causes the decrease of propylene permeance and the increase of pro-pane permeance. With the increase of hydrogen reduction time, the membranes show a clearly color change from white to brown, yielding a great selectivity loss. The data of X-ray diffraction and FT-IR prove that silver ions are reduced to Ago after hydrogen reduction, and aggregated on the surface of PEI/Pebax2533/AgBF4 composite mem- branes.展开更多
Using fixed bed micro-reactor and cracking catalyst, re-cracking of fluid catalytic cracking (FCC) gasoline at lower temperature than conventional cracking condition has been studied. The results reveal that at lower ...Using fixed bed micro-reactor and cracking catalyst, re-cracking of fluid catalytic cracking (FCC) gasoline at lower temperature than conventional cracking condition has been studied. The results reveal that at lower temperature from 350℃-450℃ and catalyst to feed ratio of 3, the olefin content is reduced from 49% to 27%(by mass) over the catalyst whose micro-reacting activation index is 53, and the octane number is kept on high level.展开更多
In order to reduce the olefin content in gasoline manufactured by the MGG (Maximizing Liquefied Gas and Gasoline) process while retaining the LPG yield, RIPP has developed a novel catalyst consisting of a more pore-...In order to reduce the olefin content in gasoline manufactured by the MGG (Maximizing Liquefied Gas and Gasoline) process while retaining the LPG yield, RIPP has developed a novel catalyst consisting of a more pore-opened matrix and the modified Y-zeolite and the ZRP zeolite modified with metal oxides. Test results have revealed that compared with the commercial catalyst RAG under comparable reaction conditions the reaction conversion rate and product distribution provided by the novel catalyst were similar, but the olefin content in gasoline obtained thereof was decreased with the octane rating unchanged along with a slight reduction of olefin content in the LPG fraction. The hydrothermal stability of the novel catalyst was better than the commercial catalyst RAG.展开更多
The product distribution and gasoline quality of FCC process, especially the olefin content,heavily depends on the catalyst performance in terms of selective/non-selective hydrogen transfer reaction selectivity. A rel...The product distribution and gasoline quality of FCC process, especially the olefin content,heavily depends on the catalyst performance in terms of selective/non-selective hydrogen transfer reaction selectivity. A reliable experimental protocol has been established by using n-dodecane as a probe molecule to characterize the selective hydrogen transfer ability of catalytic materials. The results obtained have been correlated with the performance of the practical catalysts.展开更多
介绍了中国石油化工股份有限公司抚顺石油化工研究院和大连理工大学合作开发的催化裂化汽油烷基化、芳构化降烯烃技术(Olefin To Aromatics &Alkylate,简称OTA)。OTA技术对全馏分催化裂化汽油进行加氢改质处理,通过烃类烷基化、芳构化...介绍了中国石油化工股份有限公司抚顺石油化工研究院和大连理工大学合作开发的催化裂化汽油烷基化、芳构化降烯烃技术(Olefin To Aromatics &Alkylate,简称OTA)。OTA技术对全馏分催化裂化汽油进行加氢改质处理,通过烃类烷基化、芳构化、异构化和少量裂化等烃类转化反应,使烯烃含量大幅度降低,同时产物的辛烷值损失较小,汽油收率高。试验结果表明OTA技术的催化裂化汽油质量脱硫率70%左右、烯烃体积饱和率60%-77%。汽油抗爆指数损失0-1.2、C5+汽油质量收率93.2%-97.9%、化学质量氢耗为0.11%-0.35%。展开更多
文摘ZSM-5/MCM-41 composite molecular sieve was prepared by the nano-assembling method.The ZSM-5 molecular sieve,the MCM-41 molecular sieve,the ZSM-5/MCM-41 mechanical mixture and the ZSM-5/MCM-41 composite molecular sieve were characterized by X-ray powder diffractometry,N_2 adsorption isotherms,temperature programmed desorption of ammonia and scanning electron microscopy and their properties were analyzed.Using FCC gasoline as the feed,activities of different molecular sieves for reducing olefin content were investigated in a continuous high-pressure micro-reactor unit under the following conditions:a reaction temperature of 400℃,a reaction time of 2 h,a weight hourly space velocity of 3h^(-1),and a reaction pressure of 2.0 MPa.The results showed that the HMCM-41 molecular sieve had low reaction performance,and the HZSM-5 molecular sieve demonstrated high aromatization activity,while the ZSM-5/MCM- 41 composite molecular sieve exhibited a best olefin-reducing performance because of its high isomerization activity and moderate aromatization activity.With a largest olefin-reducmg capability and a reasonable distribution of products,the composite molecular sieve was more suitable for FCC gasoline upgrading compared to other three catalysts.
文摘In order to meet the urgent need for reducing olefin content in cracked naphtha, the influence of feedstock characteristics on the olefin content was discussed. The different types and performance of catalysts developed by RIPP were introduced. Moreover, some effective operation approaches in commercial units were presented to serve as a reference to the refiners for catalyst selection.
基金Supported by the National Natural Science Foundation of China (20776137) and the National High Technology Research and Develooment Prozram of China (2008AA06Z325).
文摘In this paper, the effect of hydrogen reduction of silver ions on the performance and structure of new solid polymer electrolyte polyetherimide (PEI)/Pebax2533 (Polynylonl2/tetramethylene oxide block copolymer, PA12-PTMO)/AgBF4 composite membranes is investigated. For PEI/Pebax2533/AgBF4 composite membranesprepared with dillerent AgBF4 concentration, the permeances of propylene and ethylene increase with the increase of AgBF4 concentration due to the carrier-facilitated transport, resulting in a high selectivity. But for propyl- ene/propane mixture, the mixed-gas selectivity is lower than its ideal selectivity. The hydrogen reduction strongly influences the membrane performance, which causes the decrease of propylene permeance and the increase of pro-pane permeance. With the increase of hydrogen reduction time, the membranes show a clearly color change from white to brown, yielding a great selectivity loss. The data of X-ray diffraction and FT-IR prove that silver ions are reduced to Ago after hydrogen reduction, and aggregated on the surface of PEI/Pebax2533/AgBF4 composite mem- branes.
文摘Using fixed bed micro-reactor and cracking catalyst, re-cracking of fluid catalytic cracking (FCC) gasoline at lower temperature than conventional cracking condition has been studied. The results reveal that at lower temperature from 350℃-450℃ and catalyst to feed ratio of 3, the olefin content is reduced from 49% to 27%(by mass) over the catalyst whose micro-reacting activation index is 53, and the octane number is kept on high level.
文摘In order to reduce the olefin content in gasoline manufactured by the MGG (Maximizing Liquefied Gas and Gasoline) process while retaining the LPG yield, RIPP has developed a novel catalyst consisting of a more pore-opened matrix and the modified Y-zeolite and the ZRP zeolite modified with metal oxides. Test results have revealed that compared with the commercial catalyst RAG under comparable reaction conditions the reaction conversion rate and product distribution provided by the novel catalyst were similar, but the olefin content in gasoline obtained thereof was decreased with the octane rating unchanged along with a slight reduction of olefin content in the LPG fraction. The hydrothermal stability of the novel catalyst was better than the commercial catalyst RAG.
文摘The product distribution and gasoline quality of FCC process, especially the olefin content,heavily depends on the catalyst performance in terms of selective/non-selective hydrogen transfer reaction selectivity. A reliable experimental protocol has been established by using n-dodecane as a probe molecule to characterize the selective hydrogen transfer ability of catalytic materials. The results obtained have been correlated with the performance of the practical catalysts.
文摘介绍了中国石油化工股份有限公司抚顺石油化工研究院和大连理工大学合作开发的催化裂化汽油烷基化、芳构化降烯烃技术(Olefin To Aromatics &Alkylate,简称OTA)。OTA技术对全馏分催化裂化汽油进行加氢改质处理,通过烃类烷基化、芳构化、异构化和少量裂化等烃类转化反应,使烯烃含量大幅度降低,同时产物的辛烷值损失较小,汽油收率高。试验结果表明OTA技术的催化裂化汽油质量脱硫率70%左右、烯烃体积饱和率60%-77%。汽油抗爆指数损失0-1.2、C5+汽油质量收率93.2%-97.9%、化学质量氢耗为0.11%-0.35%。