期刊文献+
共找到30,819篇文章
< 1 2 250 >
每页显示 20 50 100
The Tension Cosmology, Largest Cosmic Structures and Explosions of Supernovae from SST
1
作者 Sylwester Kornowski 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期1029-1044,共16页
Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter lea... Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic. 展开更多
关键词 Scale-Symmetric Theory Tension Cosmology Coupling Constants Parameters σ8 and S8 Largest Cosmic Structures Dark Energy Supernova explosion Cyclic Universe
下载PDF
Experimental study of polyurea-coated fiber-reinforced cement boards under gas explosions 被引量:1
2
作者 Meng Gu Xiao-dong Ling +3 位作者 An-feng Yu Guo-xin Chen Hao-zhe Wang Han-xiang Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期201-213,共13页
Five types of polyurea elastomers were synthesized by changing the isocyanate component and the mechanical properties of polyurea materials were measured. Fiber-reinforced cement boards(FRCB)strengthened by polyurea w... Five types of polyurea elastomers were synthesized by changing the isocyanate component and the mechanical properties of polyurea materials were measured. Fiber-reinforced cement boards(FRCB)strengthened by polyurea with different formulations were processed, and a series of experiments were carried out on the specimens with gas explosion devices. The results showed that the conventional mechanical properties of different types of polyureas had their own advantages. Based on the gas explosion overpressure criterion, the blast resistances of reinforced plates were quantitatively evaluated,and the best polyurea was selected to guide the formulation design. The three typical failure modes of polyurea-reinforced FRCBs were flexural, shear, and flexural-shear failure. Dynamic thermodynamics and shock wave spectral analysis revealed that the polyurea did not undergo a glass transition in the gas explosion tests but retained its elastic properties, allowing it to effectively wrap the fragments formed by the brittle substrates. 展开更多
关键词 POLYUREA Fiber-reinforced cement board Gas explosion Failure criterion Glass transition
下载PDF
A novel method for simulating nuclear explosion with chemical explosion to form an approximate plane wave: Field test and numerical simulation 被引量:1
3
作者 Wei Ming Xiaojie Yang +3 位作者 Yadong Mao Xiang Wang Manchao He Zhigang Tao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2137-2153,共17页
A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in... A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion. 展开更多
关键词 Approximate plane wave Multi-hole simultaneous blasting Chemical explosion Nuclear explosion Pressure sensor inclusion
下载PDF
Diagnostic Study of an Extreme Explosive Cyclone over the Kuroshio/Kuroshio Extension Region 被引量:1
4
作者 ZHANG Shuqin LIAO Qinghua +4 位作者 LIU Chunlei GAO Xiaoyu LONG Jingchao LI Pengyuan XU Jianjun 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期605-617,共13页
Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-Apr... Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-April)was studied to reveal the variations of the key factors at different explosive-developing stages.This EC had weak low-level baroclinicity,mid-level cyclonic-vorticity advection,and strong low-level water vapor convergence at the initial explosive-developing stage.The low-level baroclinicity and mid-level cyclonic-vorticity advection increased substantially during the maximum-deepening-rate stage.The diagnostic analyses using the Zwack-Okossi equation showed that diabatic heating was the main contributor to the initial rapid intensification of this EC.The cyclonic-vorticity advection and warm-air advection enhanced rapidly in the middle and upper troposphere and contributed to the maximum rapid intensification,whereas the diabatic heating weakened slightly in the mid-low troposphere.The relative contribution of the diabatic heating decreased from the initial explosive-developing stage to the maximum-deepening-rate stage due to the enhancement of other factors(the cyclonic-vorticity advection and warm-air advection).Furthermore,the physical factors contributing to this EC varied with the explosive-developing stage.The non-key factors at the initial explosive-developing stage need attention to forecast the rapid intensification. 展开更多
关键词 explosive cyclone diabatic heating cyclonic-vorticity advection rapid intensification the Kuroshio/Kuroshio Extension region
下载PDF
The damage to model concrete gravity dams subjected to water explosions
5
作者 Shang Ma Ye-qing Chen +3 位作者 Zhen-qing Wang Shu-tao Li Qing Zhu Long-ming Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期119-137,共19页
Over the past century,the safety of dams has gradually attracted attention from all parties.Research on the dynamic response and damage evolution of dams under extreme loads is the basis of dam safety issues.In recent... Over the past century,the safety of dams has gradually attracted attention from all parties.Research on the dynamic response and damage evolution of dams under extreme loads is the basis of dam safety issues.In recent decades,scholars have studied the responses of dams under earthquake loads,but there is still much room for improvement in experimental and theoretical research on small probability loads such as explosions.In this paper,a 50-m-high concrete gravity dam is used as a prototype dam,and a water explosion model test of a 2.5-m-high concrete gravity dam is designed.The water pressure and the acceleration response of the dam body in the test are analysed.The pressure characteristics and dynamic response of the dam body are assessed.Taking the dam damage test as an example,a numerical model of concrete gravity dam damage is established,and the damage evolution of the dam body is analysed.By combining experiments and numerical simulations,the damage characteristics of the dam body under the action of different charge water explosions are clarified.The integrity of the dam body is well maintained under the action of a small-quantity water explosion,and the dynamic response of the dam body is mainly caused by the shock wave.Both the shock wave and the bubble pulsation cause the dam body to accelerate,and the peak acceleration of the dam body under the action of the bubble pulsation is only one percent of the peak acceleration of the dam body under the action of the shock wave.When subjected to explosions in large quantities of water,the dam body is seriously damaged.Under the action of a shock wave,the dam body produces a secondary acceleration response,which is generated by an internal interaction after the dam body is damaged.The damage evolution process of the dam body under the action of a large-scale water explosion is analysed,and it is found that the shock wave pressure of the water explosion causes local damage to the dam body facing the explosion.After the peak value of the shock wave,the impulse continues to act on the dam body,causing cumulative damage and damage inside the dam body. 展开更多
关键词 Underwater explosion Concrete gravity dam Model test Damage evolution
下载PDF
Hydromechanical characterization of gas transport amidst uncertainty for underground nuclear explosion detection 被引量:1
6
作者 Wenfeng Li Chelsea W.Neil +3 位作者 J William Carey Meng Meng Luke P.Frash Philip H.Stauffer 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2019-2032,共14页
Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of ... Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff. 展开更多
关键词 Underground nuclear explosion uncertainty quantification Radionuclide transport Biot effective stress coefficient Fracture permeability Matrix permeability
下载PDF
Evidence for Large Planetary Climate Altering Thermonuclear Explosions on Mars in the Past
7
作者 John E. Brandenburg 《International Journal of Astronomy and Astrophysics》 2023年第2期112-139,共28页
Mars data presents a collection of startling and seemly contradictory isotopic data: a glaring excess of the two radiogenic isotopes <sup>129</sup>Xe/<sup>132</sup>Xe @ 2.5 and <sup>40<... Mars data presents a collection of startling and seemly contradictory isotopic data: a glaring excess of the two radiogenic isotopes <sup>129</sup>Xe/<sup>132</sup>Xe @ 2.5 and <sup>40</sup>Ar/<sup>36</sup>Ar @ 3000 enabled identification of MM (Mars Meteorites) because they are so different than any other major Solar System reservoir. Mars appears to have lost an original atmosphere of pressure 1 bar or greater, yet the ratio <sup>14</sup>N/<sup>15</sup>N indicates only a loss of a few millibar by Solar Wind Erosion. The LPARE (Large Planet Altering R-process Event) hypothesis attempts to explain these major isotopic puzzles at Mars by postulating that two massive, anomalous thermonuclear explosions, rich in R-process physics, occurred over the surface of Northern Mars in the past, approximately 500 million years ago, and that these explosions created the <sup>129</sup>Xe/<sup>132</sup>Xe excess, and the accompanying intense neutron bombardment of Mars atmosphere and regolith created the <sup>40</sup>Ar/<sup>36</sup>Ar excess off of potassium in the surface rocks. The collateral massive and non-mass fractionating atmospheric loss, and the intense neutron bombardment of <sup>14</sup>N in the atmosphere primarily created the <sup>14</sup>N/<sup>15</sup>N ratio we presently observe, with some mass fractionating erosion of the residual atmosphere. This LPARE hypothesis is found to explain other isotopic features of Mars atmosphere and surface. <sup>80</sup>Kr and <sup>82</sup>Kr are hyperabundant in the Mars atmosphere and in the youngest MMs indicating intense irradiation of Mars surface with neutrons. Although there is presently no plausible explanation for the nuclear events, the hypothesis can be tested through related nuclear products such as Pu-244. 展开更多
关键词 MARS ISOTOPES XENON ARGON Nitrogen Potassium THORIUM Thermonuclear explosion
下载PDF
Explosion resistance performance of reinforced concrete box girder coated with polyurea:Model test and numerical simulation
8
作者 Guangpan Zhou Rong Wang +2 位作者 Mingyang Wang Jianguo Ding Yuye Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期1-18,共18页
To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur... To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn. 展开更多
关键词 explosive load explosion resistance performance Model test POLYUREA Concrete box girder Numerical simulation
下载PDF
Numerical Analysis of Explosion Characteristics of Vent Gas From 18650 LiFePO_(4) Batteries With Different States of Charge
9
作者 Shi-Lin Wang Xu Gong +5 位作者 Li-Na Liu Yi-Tong Li Chen-Yu Zhang Le-Jun Xu Xu-Ning Feng Huai-Bin Wang 《电化学(中英文)》 CAS 北大核心 2024年第8期28-35,共8页
The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion ba... The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles,thereby promoting the application and development of lithium-ion batteries.Based on this understanding and combined with previous research on gas production from lithium-ion batteries,this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge(SOCs).The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the“elimination”method,and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas.And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas.The study found that the 100%SOC battery has the lowest explosion limit of the vent gas.The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher.Therefore,it has the maximum laminar flame speed and adiabatic flame temperature.The combustion and explosion hazard of battery vent gas increases with the increase of SOC,and the risk of explosion is the greatest and most harmful when SOC reaches 100%.However,the related hazards decrease to varying degrees with overcharging of the battery.This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries,revealing the impact of SOC on the hazardousness of battery vent gas.It provides references for the safety of storage and transportation of lithium-ion batteries,safety protection of energy storage stations,and the selection of related fire extinguishing agents. 展开更多
关键词 Combustion and explosion characteristics explosion limit Laminar flame speed Adiabatic flame temperature Sensitivity analysis
下载PDF
Dinitrophenyl-oxadiazole compounds:Design strategy,synthesis,and properties of a series of new melt-cast explosives
10
作者 Bao-long Kuang Ting-wei Wang +6 位作者 Cong Li Mou Sun Qamar-un-Nisa Tariq Chao Zhang Zhi-ming Xie Zu-jia Lu Jian-guo Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期100-107,共8页
Melt-cast explosives are the most widely used energetic materials in military composite explosives,researchers have been unremittingly exploring high-energy and insensitive melt-cast explosives.In this work,a series o... Melt-cast explosives are the most widely used energetic materials in military composite explosives,researchers have been unremittingly exploring high-energy and insensitive melt-cast explosives.In this work,a series of dinitrophenyl-oxadiazole compounds were designed and prepared.These compounds have an ideal low melting point(80-97℃),good detonation performance(detonation velocity D=6455-6971 m/s,detonation pressure P=18-19 GPa)and extreme insensitive nature(impact sensitivity≥60 J,friction sensitivity>360 N).All these compounds were well characterized by nuclear magnetic resonance,fourier transform infrared spectroscopy,elemental analysis.Compounds 2,3 were unambiguously confirmed by X-ray single crystal diffraction analysis.As a result,their overall properties are superior to traditional melt-cast explosives trinitrotoluene(TNT)and dinitroanisole(DNAN)which may have excellent potential applications in insensitive melt-cast explosives. 展开更多
关键词 Dinitrophenyl-oxadiazole Melt-cast explosive Low sensitivity
下载PDF
Theoretical analysis of the elastic Kelvin-Helmholtz instability in explosive weldings
11
作者 Yuanbo Sun Jianning Gou +5 位作者 Cheng Wang Qiang Zhou Rui Liu Pengwan Chen Tonghui Yang Xiang Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期521-528,共8页
By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the el... By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the elasticity of the material at the interface effectively determines the wavelength, because explosive welding is basically a solid-state welding process. To this end, an analytical model of elastic hydrodynamic instabilities is proposed, and the most unstable mode is selected in the solid phase. Similar approaches have been widely used to study the interfacial behavior of solid metals in high-energy-density physics. By comparing the experimental and theoretical results, it is concluded that thermal softening,which significantly reduces the shear modulus, is necessary and sufficient for successful welding. The thermal softening is verified by theoretical analysis of the increase in temperature due to the impacting and sliding of the flyer and base plates, and some experimental observations are qualitatively validated.In summary, the combined effect of the KH and RT instabilities in solids determines the wavy morphology, and our theoretical results are in good qualitative agreement with experimental and numerical observations. 展开更多
关键词 explosive welding Hydrodynamic instabilities ELASTICITY
下载PDF
Effects of main components on energy output characteristics of thermobaric explosive——A case study of typical formulations
12
作者 Yunfei Zhao Yaning Li +3 位作者 Zhiwei Han Peng Bao Jingyan Wang Boliang Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期205-216,共12页
As a kind of high-efficiency explosive with compound destructive capability, the energy output law of thermobaric explosives has been receiving great attention. In order to investigate the effects of main components o... As a kind of high-efficiency explosive with compound destructive capability, the energy output law of thermobaric explosives has been receiving great attention. In order to investigate the effects of main components on the explosive characteristics of thermobaric explosives, various high explosives and oxidants were selected to formulate five different types of thermobaric explosive. Then they were tested in both open space and closed space respectively. Pressure measurement system, high-speed camera,infrared thermal imager and multispectral temperature measurement system were used for pressure,temperature and fireball recording. The effects of different components on the explosive characteristics of thermobaric explosive were analyzed. The results showed that in open space, the overpressure is dominated by the high explosives content in the formulation. The addition of the oxidants will decrease the explosion overpressure but will increase the duration and overall brightness of the fireball. While in closed space, the quasi-static pressure formed after the explosion is positively correlated with the temperature and gas production. In addition, it was found that the differences in shell constraints can also alter the afterburning reaction of thermobaric explosives, thus affecting their energy output characteristics. PVC shell constraint obviously increases the overpressure and makes the fireball burn more violently. 展开更多
关键词 Thermobaric explosives COMPONENTS OVERPRESSURE FIREBALL Afterburning reaction
下载PDF
Anti-explosion performance and dynamic response of an innovative multi-layer composite explosion containment vessel
13
作者 Zhen Wang Heng Chen +3 位作者 Qi Yuan Wenbin Gu Xingbo Xie Hongwei Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期105-121,共17页
An innovative multi-layer composite explosion containment vessel(CECV)utilizing a sliding steel platealuminum honeycomb-fiber cloth sandwich is put forward to improve the anti-explosion capacity of a conventional sing... An innovative multi-layer composite explosion containment vessel(CECV)utilizing a sliding steel platealuminum honeycomb-fiber cloth sandwich is put forward to improve the anti-explosion capacity of a conventional single-layer explosion containment vessel(SECV).Firstly,a series of experiments and finite element(FE)simulations of internal explosions are implemented to understand the basic anti-explosion characteristics of a SECV and the rationality of the computational models and methods is verified by the comparison between the experimental results and simulation results.Based on this,the CECV is designed in detail and a variety of FE simulations are carried out to investigate effects of the sandwich structure,the explosive quantity and the laying mode of the fiber cloth on anti-explosion performance and dynamic response of the CECV under internal explosions.Simulation results indicate that the end cover is the critical position for both the SECV and CECV.The maximum pressure of the explosion shock wave and the maximum strain of the CECV can be extremely declined compared to those of the SECV.As a result,the explosive quantity the CECV can sustain is up to 20 times of that the SECV can sustain.Besides,as the explosive quantity increases,the internal pressure of the CECV keeps growing and the plastic deformation and failure of the sandwich structure become more and more severe,yielding plastic strain of the CECV in addition to elastic strain.The results also reveal that the laying angles of the fiber cloth's five layers have an impact on the anti-explosion performance of the CECV.For example,the CECV with fiber cloth layered in 0°/45°/90°/45°/0°mode has the optimal anti-capacity,compared to 0°/0°/0°/0°/0°and 0°/30°/60°/30°/0°modes.Overall,owing to remarkable anti-explosion capacity,this CECV can be regarded as a promising candidate for explosion resistance. 展开更多
关键词 explosive container Honeycomb-fiber cloth ANTI-explosION Aluminum honeycomb core COMPOSITE
下载PDF
Adaptive optimisation of explosive reactive armour for protection against kinetic energy and shaped charge threats
14
作者 Philipp Moldtmann Julian Berk +5 位作者 Shannon Ryan Andreas Klavzar Jerome Limido Christopher Lange Santu Rana Svetha Venkatesh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期1-12,共12页
We evaluate an adaptive optimisation methodology,Bayesian optimisation(BO),for designing a minimum weight explosive reactive armour(ERA)for protection against a surrogate medium calibre kinetic energy(KE)long rod proj... We evaluate an adaptive optimisation methodology,Bayesian optimisation(BO),for designing a minimum weight explosive reactive armour(ERA)for protection against a surrogate medium calibre kinetic energy(KE)long rod projectile and surrogate shaped charge(SC)warhead.We perform the optimisation using a conventional BO methodology and compare it with a conventional trial-and-error approach from a human expert.A third approach,utilising a novel human-machine teaming framework for BO is also evaluated.Data for the optimisation is generated using numerical simulations that are demonstrated to provide reasonable qualitative agreement with reference experiments.The human-machine teaming methodology is shown to identify the optimum ERA design in the fewest number of evaluations,outperforming both the stand-alone human and stand-alone BO methodologies.From a design space of almost 1800 configurations the human-machine teaming approach identifies the minimum weight ERA design in 10 samples. 展开更多
关键词 Terminal ballistics Armour explosive reactive armour Optimisation Bayesian optimisation
下载PDF
Explosion damage effects of aviation kerosene storage tank under strong ignition
15
作者 Shixiang Song Cheng Wang +1 位作者 Boyang Qiao Gongtian Gu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期27-38,共12页
In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the... In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the tank in the presence of bottom oil,half oil and full oil,as well as empty tank,were investigated under internal explosion by various TNT charge contents(1.8 kg,3.5 kg and 6.2 kg).The results showed that the tank roof was the only fragment produced,and the damage forms could be divided into three types.The increase of TNT charge content and oil volume enlarged the deformation of the tank,while the hole ratio presented a trend of increase first and then decrease.The H_r,maxand V_(max)values positively increased as increasing the TNT charge content and oil volume(from empty to half oil),but decreased in full oil.The Pmaxvalues had a progressive increase with the increment of TNT charge content,but not the case with the increase in oil volumes.The development of fireball was divided into three stages:tank roof‘towed'flame,jet flow flame tumbling and rising,and jet flow flame extinguishing.The Dmaxand Hf,maxvalues both increased as increasing TNT charge content and oil volumes.The oscillation phenomenon of fireball temperature was observed in the cooling process.The average temperature of fireball surface was positively correlated with TNT charge content,and negatively correlated with oil volumes. 展开更多
关键词 Aviation kerosene Storage tank Internal explosion Shock wave FIREBALL
下载PDF
Tuning microstructures of TC4 ELI to improve explosion resistance
16
作者 Changle Zhang Yangwei Wang +6 位作者 Lin Wang Zixuan Ning Guoju Li Dongping Chen Zhi-Wei Yan Yuchen Song Xucai Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期78-99,共22页
A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to impr... A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to improve explosion resistance.Moreover,the current challenge is quantifying microstructural changes'effects on explosion resistance and incorporating microstructural changes into finite element models.This work aims to tune microstructures to improve explosion resistance and elucidate their anti-explosion mechanism,and find a suitable method to incorporate microstructural changes into finite element models.In this work,we systematically study the deformation and failure characteristics of TC4 ELI plates with varying microstructures using an air explosion test and LS-DYNA finite element modeling.The Johnson-Cook(JC)constitutive parameters are used to quantify the effects of microstructural changes on explosion resistance and incorporate microstructural changes into finite element models.Because of the heat treatment,one plate has equiaxed microstructure and the other has bimodal microstructure.The convex of the plate after the explosion has a quadratic relationship with the charge mass,and the simulation results demonstrate high reliability,with the error less than 17.5%.Therefore,it is feasible to obtain corresponding JC constitutive parameters based on the differences in microstructures and mechanical properties and characterize the effects of microstructural changes on explosion resistance.The bimodal target exhibits excellent deformation resistance.The response of bimodal microstructure to the shock wave may be more intense under explosive loading.The well-coordinated structure of the bimodal target enhances its resistance to deformation. 展开更多
关键词 MICROSTRUCTURE Finite element modelling Parameter optimization Failure characteristics explosion resistance
下载PDF
Influences of oscillation on the physical stability and explosion characteristics of solid-liquid mixed fuel
17
作者 Chi Zhang Ge Song +2 位作者 Hui Guo Jiafan Ren Chunhua Bai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期191-198,共8页
The stratification phenomenon resulting from differences in the physical properties of solid-liquid components seriously affect the final combustion and explosion characteristics of mixed fuel under the action of osci... The stratification phenomenon resulting from differences in the physical properties of solid-liquid components seriously affect the final combustion and explosion characteristics of mixed fuel under the action of oscillation.The effects of oscillation on the physical stability of mixed fuel with two solid-liquid ratios and three liquid component distribution ratios have been investigated using a self-designed experimental system at oscillation frequencies of 60-300 r/min.The explosion characteristics of mixed fuel before and after oscillation are gained from a 20 L spherical explosion container system.When the mass ratio of liquid components is controlled at 66.9%,64.7%,62.6%the final explosion characteristics are stable,with a maximum difference of only 0.71%.The volume of liquid fuel precipitation increases with increasing oscillation frequency when the mass ratio of liquid components reaches 71.7%,69.6%,67.7%.The fuel explosion overpressure after oscillation decreases with increasing liquid precipitation volume,and the repeatability is poor,with a maximum standard deviation of 82.736,which is much higher than the ratio without stratification.Properly controlling the mass ratio of liquid components of the mixed fuel can effectively combat the impact of oscillation on the physical state and maintain the stability of the final explosion characteristics. 展开更多
关键词 Solid-liquid mixed fuel Physical stability explosion characteristics
下载PDF
Fluorinated semi-interpenetrating polymer networks for enhancing the mechanical performance and storage stability of polymer-bonded explosives by controlling curing and phase separation rates
18
作者 Chao Deng Huihui Liu +1 位作者 Yongping Bai Zhen Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期58-66,共9页
Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepare... Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount. 展开更多
关键词 Semi-interpenetrating polymer networks FLUOROPOLYMER Curing rate Phase separation rate Polymer-bonded explosives
下载PDF
Assessing the energy release characteristics during the middle detonation reaction stage of aluminized explosives
19
作者 Kun Yang Lang Chen +3 位作者 Danyang Liu Bin Zhang Jianying Lu Junying Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期270-277,共8页
Afterburning behind the detonation front of an aluminized explosive releases energy on the millisecond timescale,which prolong the release of detonation energy and the energy release at different stages also shows sig... Afterburning behind the detonation front of an aluminized explosive releases energy on the millisecond timescale,which prolong the release of detonation energy and the energy release at different stages also shows significant differences.However,at present,there are few effective methods for evaluating the energy release characteristics of the middle reaction stage of such explosives,which can have a duration of tens to hundreds of microseconds.The present work demonstrates an approach to assessing the midstage of an aluminized explosive detonation based on a water push test employing a high degree of confinement.In this method,the explosive is contained in a steel cylinder having one end closed that is installed at the bottom of a transparent water tank.Upon detonation,the gaseous products expand in one direction while forcing water ahead of them.The resulting underwater shock wave and the interface between the gas phase products and the water are tracked using an ultra-high-speed framing and streak camera.The shock wave velocity in water and the expansion work performed by the gaseous detonation products were calculated to assess the energy release characteristics of aluminized explosives such as CL-20 and RDX in the middle stage of the detonation reaction.During the middle stage of the detonation process of these aluminized explosives,the aluminum reaction reduced the attenuation of shock waves and increased the work performed by gas phase products.A higher aluminum content increased the energy output while the presence of oxidants slowed the energy release rate.This work demonstrates an effective means of evaluating the performance of aluminized explosives. 展开更多
关键词 Aluminized explosive Non-ideal detonation Water push test Energy release
下载PDF
Combination of Nitrogen-Rich Skeleton and Coordination Group:Synthesis of a High-Energy Primary Explosive Based on 1H-Tetrazole-5-Carbohydrazide
20
作者 Tingwei Wang Zujia Lu +6 位作者 Shu Bu Baolong Kuang Lu Zhang Zhenxin Yi Kun Wang Shunguan Zhu Jianguo Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期271-277,共7页
The high energy coordination compounds Cu(TZCA)_(2)(ClO_(4))_(2)(ECCs-1) was prepared by 1H-tetrazole-5-carbohydrazide(TZCA) with a high energy skeleton and a strong coordination ability group.At the same time,the rea... The high energy coordination compounds Cu(TZCA)_(2)(ClO_(4))_(2)(ECCs-1) was prepared by 1H-tetrazole-5-carbohydrazide(TZCA) with a high energy skeleton and a strong coordination ability group.At the same time,the reaction activity of the ligand was explored,and the single crystal structure of it and intermediate were obtained.The structures of all substances were characterized by IR and EA.And the structure and composition of ECCs-1 are confirmed by ESP,AC,SEM and ICP-OES.Physical and chemical properties tests show that ECCs-1 has an acceptable thermal stability(T_(d)=177℃) and extremely sensitive mechanical stimulation(IS=1 J,FS=5 N).The comprehensive performance test results show that ECCs-1 has excellent initiation ability.In addition,the decomposition mechanism of ECCs-1 is explored from two aspects of experiment and theoretical calculation. 展开更多
关键词 1H-tetrazole-5-carbohydrazide Primary explosive Decomposition mechanism Coordination polymers Laser
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部