The effects of back gate bias(BGEs) on radio-frequency(RF) performances in PD SOI n MOSFETs are presented in this paper. Floating body(FB) device, T-gate body-contact(TB) device, and tunnel diode body-contact(TDBC) de...The effects of back gate bias(BGEs) on radio-frequency(RF) performances in PD SOI n MOSFETs are presented in this paper. Floating body(FB) device, T-gate body-contact(TB) device, and tunnel diode body-contact(TDBC) device, of which the supply voltages are all 1.2 V, are compared under different back gate biases by different figures of merit, such as cut-off frequency( fT), maximum frequency of oscillation( fmax), etc. Because of the lack of a back gate conducting channel, the drain conductance(gd) of TDBC transistor shows a smaller degradation than those of the others, and the trans-conductance(gm) of TDBC is almost independent of back gate bias. The values of fT of TDBC are also kept nearly constant under different back gate biases. However, RF performances of FB and TB each show a significant degradation when the back gate bias is larger than ~ 20 V. The results indicate that TDBC structures could effectively improve the back gate bias in RF performance.展开更多
The hysteresis effect in the output characteristics,originating from the floating body effect,has been measured in partially depleted(PD) silicon-on-insulator(SOI) MOSFETs at different back-gate biases.I D hystere...The hysteresis effect in the output characteristics,originating from the floating body effect,has been measured in partially depleted(PD) silicon-on-insulator(SOI) MOSFETs at different back-gate biases.I D hysteresis has been developed to clarify the hysteresis characteristics.The fabricated devices show the positive and negative peaks in the I D hysteresis.The experimental results show that the I D hysteresis is sensitive to the back gate bias in 0.13-渭m PD SOI MOSFETs and does not vary monotonously with the back-gate bias.Based on the steady-state Shockley-Read-Hall(SRH) recombination theory,we have successfully interpreted the impact of the back-gate bias on the hysteresis effect in PD SOI MOSFETs.展开更多
Due to the ultra-thin nature and moderate carrier mobility,semiconducting two-dimensional(2D)materials have attracted extensive attention for next-generation electronics.However,the gate bias stress instability and hy...Due to the ultra-thin nature and moderate carrier mobility,semiconducting two-dimensional(2D)materials have attracted extensive attention for next-generation electronics.However,the gate bias stress instability and hysteresis are always observed in these 2D materials-based transistors that significantly degrade their reliability for practical applications.Herein,the origin of gate bias stress instability and hysteresis for chemical vapor deposited monolayer WS2 transistors are investigated carefully.The transistor performance is found to be strongly affected by the gate bias stress time,sweeping rate and range,and temperature.Based on the systematical study and complementary analysis,charge trapping is determined to be the major contribution for these observed phenomena.Importantly,due to these charge trapping effects,the channel current is observed to decrease with time;hence,a rate equation,considering the charge trapping and time decay effect of current,is proposed and developed to model the phenomena with excellent consistency with experimental data.All these results do not only indicate the validity of the charge trapping model,but also confirm the hysteresis being indeed caused by charge trapping.Evidently,this simple model provides a sufficient explanation for the charge trapping induced gate bias stress instability and hysteresis in monolayer WS2 transistors,which can be also applicable to other kinds of transistors.展开更多
Ultra-thin-body (UTB) In0.53Ga0.47As-on-insulator (In0.53Ga0.47As-OI) structures with thicknesses of 8 and 15nm are realized by transferring epitaxially grown In0.53Ga0.47As layers to silicon substrates with 15-nm...Ultra-thin-body (UTB) In0.53Ga0.47As-on-insulator (In0.53Ga0.47As-OI) structures with thicknesses of 8 and 15nm are realized by transferring epitaxially grown In0.53Ga0.47As layers to silicon substrates with 15-nmthick A12 03 as a buried oxide by using the direct wafer bonding method. Back gate n-channel metal-oxidesemiconductor field-effect transistors (nMOSFETs) are fabricated by using these In0.53Ga0.47As-OI structures with excellent electrical characteristics. Positive bias temperature instability (PBTI) and hot carrier injection (HCI) characterizations are performed for the In0.53Ga0.47As-OI nMOSFETs. It is confirmed that the In0.53Ga0.47 As-OI nMOSFETs with a thinner body thickness suffer from more severe degradations under both PBTI and HCr stresses. Moreover, the different evolutions of the threshold voltage and the saturation current of the UTB In0.53Ga0.47As-OI nMOSFETs may be due to the slow border traps.展开更多
Stress voltages on time-dependent breakdown characteristics of GaN MIS-HEMTs during negative gate bias stress (with VGS < 0, VD = VS = 0) and off-state stress (VG < VTh, VDS > 0, VS = 0) are investigated. For...Stress voltages on time-dependent breakdown characteristics of GaN MIS-HEMTs during negative gate bias stress (with VGS < 0, VD = VS = 0) and off-state stress (VG < VTh, VDS > 0, VS = 0) are investigated. For negative bias stress, the breakdown time distribution (β) decreases with the increasing negative gate voltage, while β is larger for higher drain voltage at off-state stress. Two humps in the time-dependent gate leakage occurred under both breakdown conditions, which can be ascribed to the dielectric breakdown triggered earlier and followed by the GaN layer breakdown. Combining the electric distribution from simulation and long-term monitoring of electric parameter, the peak electric fields under the gate edges at source and drain sides are confirmed as the main formation locations for per-location paths during negative gate voltage stress and off-state stress, respectively.展开更多
Low power supply operation with leakage power reduction is the prime concern in modern nano-scale CMOS memory devices. In the present scenario, low leakage memory architecture becomes more challenging, as it has 30% o...Low power supply operation with leakage power reduction is the prime concern in modern nano-scale CMOS memory devices. In the present scenario, low leakage memory architecture becomes more challenging, as it has 30% of the total chip power consumption. Since, the SRAM cell is low in density and most of memory processing data remain stable during the data holding operation, the stored memory data are more affected by the leakage phenomena in the circuit while the device parameters are scaled down. In this survey, origins of leakage currents in a short-channel device and various leakage control techniques for ultra-low power SRAM design are discussed. A classification of these approaches made based on their key design and functions, such as biasing technique, power gating and multi-threshold techniques. Based on our survey, we summarize the merits and demerits and challenges of these techniques. This comprehensive study will be helpful to extend the further research for future implementations.展开更多
Positive bias temperature instability(PBTI) characteristics and degradation mechanisms of NMOSFET with high-k/metal gate last process have been systematically investigated. The time evolution of threshold voltage sh...Positive bias temperature instability(PBTI) characteristics and degradation mechanisms of NMOSFET with high-k/metal gate last process have been systematically investigated. The time evolution of threshold voltage shift during PBTI stress still follows a power law. However, the exponent n decreases from 0.26 to 0.16 linearly as the gate stress voltage increases from 0.6 to 1.2 V. There is no interface state generation during stress because of the negligible sub-threshold swing change. Moreover, the activation energy is 0.1 e V, which implies that electrons directly tunnel into high-k bulk and are trapped by pre-existing traps resulting into PBTI degradation. During recovery the threshold voltage shift is linear in lgt, and a mathematical model is proposed to express threshold voltage shift.展开更多
文摘The effects of back gate bias(BGEs) on radio-frequency(RF) performances in PD SOI n MOSFETs are presented in this paper. Floating body(FB) device, T-gate body-contact(TB) device, and tunnel diode body-contact(TDBC) device, of which the supply voltages are all 1.2 V, are compared under different back gate biases by different figures of merit, such as cut-off frequency( fT), maximum frequency of oscillation( fmax), etc. Because of the lack of a back gate conducting channel, the drain conductance(gd) of TDBC transistor shows a smaller degradation than those of the others, and the trans-conductance(gm) of TDBC is almost independent of back gate bias. The values of fT of TDBC are also kept nearly constant under different back gate biases. However, RF performances of FB and TB each show a significant degradation when the back gate bias is larger than ~ 20 V. The results indicate that TDBC structures could effectively improve the back gate bias in RF performance.
基金Project supported by the TCAD Simulation and SPICE Modeling of 0.13μm SOI Technology,China (Grant No. 2009ZX02306-002)
文摘The hysteresis effect in the output characteristics,originating from the floating body effect,has been measured in partially depleted(PD) silicon-on-insulator(SOI) MOSFETs at different back-gate biases.I D hysteresis has been developed to clarify the hysteresis characteristics.The fabricated devices show the positive and negative peaks in the I D hysteresis.The experimental results show that the I D hysteresis is sensitive to the back gate bias in 0.13-渭m PD SOI MOSFETs and does not vary monotonously with the back-gate bias.Based on the steady-state Shockley-Read-Hall(SRH) recombination theory,we have successfully interpreted the impact of the back-gate bias on the hysteresis effect in PD SOI MOSFETs.
基金This research was financially supported the National Natural Science Foundation of China(Nos.51672229,61605024,and 61775031)Fundamental Research Funds for the Central Universities(No.ZYGX2018J056)+2 种基金UESTC Foundation for the Academic Newcomers Award,the General Research Fund(CityU No.11275916)the Theme-based Research(No.T42-103/16-N)of the Research Grants Council of Hong Kong,Chinathe Science Technology and Innovation Committee of Shenzhen Municipality(No.Grant JCYJ20170818095520778).
文摘Due to the ultra-thin nature and moderate carrier mobility,semiconducting two-dimensional(2D)materials have attracted extensive attention for next-generation electronics.However,the gate bias stress instability and hysteresis are always observed in these 2D materials-based transistors that significantly degrade their reliability for practical applications.Herein,the origin of gate bias stress instability and hysteresis for chemical vapor deposited monolayer WS2 transistors are investigated carefully.The transistor performance is found to be strongly affected by the gate bias stress time,sweeping rate and range,and temperature.Based on the systematical study and complementary analysis,charge trapping is determined to be the major contribution for these observed phenomena.Importantly,due to these charge trapping effects,the channel current is observed to decrease with time;hence,a rate equation,considering the charge trapping and time decay effect of current,is proposed and developed to model the phenomena with excellent consistency with experimental data.All these results do not only indicate the validity of the charge trapping model,but also confirm the hysteresis being indeed caused by charge trapping.Evidently,this simple model provides a sufficient explanation for the charge trapping induced gate bias stress instability and hysteresis in monolayer WS2 transistors,which can be also applicable to other kinds of transistors.
基金Supported by the National Program on Key Basic Research Project of China under Grant No 2011CBA00607the National Natural Science Foundation of China under Grant Nos 61106089 and 61376097the Zhejiang Provincial Natural Science Foundation of China under Grant No LR14F040001
文摘Ultra-thin-body (UTB) In0.53Ga0.47As-on-insulator (In0.53Ga0.47As-OI) structures with thicknesses of 8 and 15nm are realized by transferring epitaxially grown In0.53Ga0.47As layers to silicon substrates with 15-nmthick A12 03 as a buried oxide by using the direct wafer bonding method. Back gate n-channel metal-oxidesemiconductor field-effect transistors (nMOSFETs) are fabricated by using these In0.53Ga0.47As-OI structures with excellent electrical characteristics. Positive bias temperature instability (PBTI) and hot carrier injection (HCI) characterizations are performed for the In0.53Ga0.47As-OI nMOSFETs. It is confirmed that the In0.53Ga0.47 As-OI nMOSFETs with a thinner body thickness suffer from more severe degradations under both PBTI and HCr stresses. Moreover, the different evolutions of the threshold voltage and the saturation current of the UTB In0.53Ga0.47As-OI nMOSFETs may be due to the slow border traps.
基金Project supported by the National Key Research and Development Program,China(Grant No.2017YFB0402800)the Key Research and Development Program of Guangdong Province,China(Grant Nos.2019B010128002 and 2020B010173001)+4 种基金the National Natural Science Foundation of China(Grant No.U1601210)the Natural Science Foundation of Guangdong Province,China(Grant No.2015A030312011)the Open Project of Key Laboratory of Microelectronic Devices and Integrated Technology(Grant No.202006)the Science and Technology Plan of Guangdong Province,China(Grant No.2017B010112002)the China Postdoctoral Science Foundation(Grant No.2019M663233).
文摘Stress voltages on time-dependent breakdown characteristics of GaN MIS-HEMTs during negative gate bias stress (with VGS < 0, VD = VS = 0) and off-state stress (VG < VTh, VDS > 0, VS = 0) are investigated. For negative bias stress, the breakdown time distribution (β) decreases with the increasing negative gate voltage, while β is larger for higher drain voltage at off-state stress. Two humps in the time-dependent gate leakage occurred under both breakdown conditions, which can be ascribed to the dielectric breakdown triggered earlier and followed by the GaN layer breakdown. Combining the electric distribution from simulation and long-term monitoring of electric parameter, the peak electric fields under the gate edges at source and drain sides are confirmed as the main formation locations for per-location paths during negative gate voltage stress and off-state stress, respectively.
文摘Low power supply operation with leakage power reduction is the prime concern in modern nano-scale CMOS memory devices. In the present scenario, low leakage memory architecture becomes more challenging, as it has 30% of the total chip power consumption. Since, the SRAM cell is low in density and most of memory processing data remain stable during the data holding operation, the stored memory data are more affected by the leakage phenomena in the circuit while the device parameters are scaled down. In this survey, origins of leakage currents in a short-channel device and various leakage control techniques for ultra-low power SRAM design are discussed. A classification of these approaches made based on their key design and functions, such as biasing technique, power gating and multi-threshold techniques. Based on our survey, we summarize the merits and demerits and challenges of these techniques. This comprehensive study will be helpful to extend the further research for future implementations.
基金Project supported by the Important National Science&Technology Specific Projects(No.2009ZX02035)the National Natural Science Foundation of China(Nos.61176091,61306129)
文摘Positive bias temperature instability(PBTI) characteristics and degradation mechanisms of NMOSFET with high-k/metal gate last process have been systematically investigated. The time evolution of threshold voltage shift during PBTI stress still follows a power law. However, the exponent n decreases from 0.26 to 0.16 linearly as the gate stress voltage increases from 0.6 to 1.2 V. There is no interface state generation during stress because of the negligible sub-threshold swing change. Moreover, the activation energy is 0.1 e V, which implies that electrons directly tunnel into high-k bulk and are trapped by pre-existing traps resulting into PBTI degradation. During recovery the threshold voltage shift is linear in lgt, and a mathematical model is proposed to express threshold voltage shift.