期刊文献+
共找到1,176篇文章
< 1 2 59 >
每页显示 20 50 100
Prediction of rock mass classification in tunnel boring machine tunneling using the principal component analysis (PCA)-gated recurrent unit (GRU) neural network
1
作者 Ke Man Liwen Wu +3 位作者 Xiaoli Liu Zhifei Song Kena Li Nawnit Kumar 《Deep Underground Science and Engineering》 2024年第4期413-425,共13页
Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project... Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project of Lanzhou Water Source Construction,this study proposed a neural network called PCA-GRU,which combines principal component analysis(PCA)with gated recurrent unit(GRU)to improve the accuracy of predicting rock mass classification in TBM tunneling.The input variables from the PCA dimension reduction of nine parameters in the sample data set were utilized for establishing the PCA-GRU model.Subsequently,in order to speed up the response time of surrounding rock mass classification predictions,the PCA-GRU model was optimized.Finally,the prediction results obtained by the PCA-GRU model were compared with those of four other models and further examined using random sampling analysis.As indicated by the results,the PCA-GRU model can predict the rock mass classification in TBM tunneling rapidly,requiring about 20 s to run.It performs better than the previous four models in predicting the rock mass classification,with accuracy A,macro precision MP,and macro recall MR being 0.9667,0.963,and 0.9763,respectively.In Class II,III,and IV rock mass prediction,the PCA-GRU model demonstrates better precision P and recall R owing to the dimension reduction technique.The random sampling analysis indicates that the PCA-GRU model shows stronger generalization,making it more appropriate in situations where the distribution of various rock mass classes and lithologies change in percentage. 展开更多
关键词 gated recurrent unit(gru) prediction of rock mass classification principal component analysis(PCA) TBM tunneling
下载PDF
Real-time analysis and prediction of shield cutterhead torque using optimized gated recurrent unit neural network 被引量:11
2
作者 Song-Shun Lin Shui-Long Shen Annan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1232-1240,共9页
An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated rec... An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated recurrent unit(GRU)neural network.PSO is utilized to assign the optimal hyperparameters of GRU neural network.There are mainly four steps:data collection and processing,hybrid model establishment,model performance evaluation and correlation analysis.The developed model provides an alternative to tackle with time-series data of tunnel project.Apart from that,a novel framework about model application is performed to provide guidelines in practice.A tunnel project is utilized to evaluate the performance of proposed hybrid model.Results indicate that geological and construction variables are significant to the model performance.Correlation analysis shows that construction variables(main thrust and foam liquid volume)display the highest correlation with the cutterhead torque(CHT).This work provides a feasible and applicable alternative way to estimate the performance of shield tunneling. 展开更多
关键词 Earth pressure balance(EPB)shield tunneling Cutterhead torque(CHT)prediction Particle swarm optimization(PSO) gated recurrent unit(gru)neural network
下载PDF
Radar Quantitative Precipitation Estimation Based on the Gated Recurrent Unit Neural Network and Echo-Top Data 被引量:2
3
作者 Haibo ZOU Shanshan WU Miaoxia TIAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第6期1043-1057,共15页
The Gated Recurrent Unit(GRU) neural network has great potential in estimating and predicting a variable. In addition to radar reflectivity(Z), radar echo-top height(ET) is also a good indicator of rainfall rate(R). I... The Gated Recurrent Unit(GRU) neural network has great potential in estimating and predicting a variable. In addition to radar reflectivity(Z), radar echo-top height(ET) is also a good indicator of rainfall rate(R). In this study, we propose a new method, GRU_Z-ET, by introducing Z and ET as two independent variables into the GRU neural network to conduct the quantitative single-polarization radar precipitation estimation. The performance of GRU_Z-ET is compared with that of the other three methods in three heavy rainfall cases in China during 2018, namely, the traditional Z-R relationship(Z=300R1.4), the optimal Z-R relationship(Z=79R1.68) and the GRU neural network with only Z as the independent input variable(GRU_Z). The results indicate that the GRU_Z-ET performs the best, while the traditional Z-R relationship performs the worst. The performances of the rest two methods are similar.To further evaluate the performance of the GRU_Z-ET, 200 rainfall events with 21882 total samples during May–July of 2018 are used for statistical analysis. Results demonstrate that the spatial correlation coefficients, threat scores and probability of detection between the observed and estimated precipitation are the largest for the GRU_Z-ET and the smallest for the traditional Z-R relationship, and the root mean square error is just the opposite. In addition, these statistics of GRU_Z are similar to those of optimal Z-R relationship. Thus, it can be concluded that the performance of the GRU_ZET is the best in the four methods for the quantitative precipitation estimation. 展开更多
关键词 quantitative precipitation estimation gated recurrent unit neural network Z-R relationship echo-top height
下载PDF
A gated recurrent unit model to predict Poisson’s ratio using deep learning 被引量:1
4
作者 Fahd Saeed Alakbari Mysara Eissa Mohyaldinn +4 位作者 Mohammed Abdalla Ayoub Ibnelwaleed A.Hussein Ali Samer Muhsan Syahrir Ridha Abdullah Abduljabbar Salih 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期123-135,共13页
Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to spe... Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to specific data ranges with an average absolute percentage relative error(AAPRE)of more than 10%.The published gated recurrent unit(GRU)models do not consider trend analysis to show physical behaviors.In this study,we aim to develop a GRU model using trend analysis and three inputs for predicting n s based on a broad range of data,n s(value of 0.1627-0.4492),bulk formation density(RHOB)(0.315-2.994 g/mL),compressional time(DTc)(44.43-186.9 μs/ft),and shear time(DTs)(72.9-341.2μ s/ft).The GRU model was evaluated using different approaches,including statistical error an-alyses.The GRU model showed the proper trends,and the model data ranges were wider than previous ones.The GRU model has the largest correlation coefficient(R)of 0.967 and the lowest AAPRE,average percent relative error(APRE),root mean square error(RMSE),and standard deviation(SD)of 3.228%,1.054%,4.389,and 0.013,respectively,compared to other models.The GRU model has a high accuracy for the different datasets:training,validation,testing,and the whole datasets with R and AAPRE values were 0.981 and 2.601%,0.966 and 3.274%,0.967 and 3.228%,and 0.977 and 2.861%,respectively.The group error analyses of all inputs show that the GRU model has less than 5% AAPRE for all input ranges,which is superior to other models that have different AAPRE values of more than 10% at various ranges of inputs. 展开更多
关键词 Static Poisson’s ratio Deep learning gated recurrent unit(gru) Sand control Trend analysis Geomechanical properties
下载PDF
Aerial target threat assessment based on gated recurrent unit and self-attention mechanism
5
作者 CHEN Chen QUAN Wei SHAO Zhuang 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期361-373,共13页
Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties ... Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties in dealing with high dimensional time series target data, a threat assessment method based on self-attention mechanism and gated recurrent unit(SAGRU) is proposed. Firstly, a threat feature system including air combat situations and capability features is established. Moreover, a data augmentation process based on fractional Fourier transform(FRFT) is applied to extract more valuable information from time series situation features. Furthermore, aiming to capture key characteristics of battlefield evolution, a bidirectional GRU and SA mechanisms are designed for enhanced features.Subsequently, after the concatenation of the processed air combat situation and capability features, the target threat level will be predicted by fully connected neural layers and the softmax classifier. Finally, in order to validate this model, an air combat dataset generated by a combat simulation system is introduced for model training and testing. The comparison experiments show the proposed model has structural rationality and can perform threat assessment faster and more accurately than the other existing models based on deep learning. 展开更多
关键词 target threat assessment gated recurrent unit(gru) self-attention(SA) fractional Fourier transform(FRFT)
下载PDF
A HybridManufacturing ProcessMonitoringMethod Using Stacked Gated Recurrent Unit and Random Forest
6
作者 Chao-Lung Yang Atinkut Atinafu Yilma +2 位作者 Bereket Haile Woldegiorgis Hendrik Tampubolon Hendri Sutrisno 《Intelligent Automation & Soft Computing》 2024年第2期233-254,共22页
This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart ... This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems. 展开更多
关键词 Smart manufacturing process monitoring quality control gated recurrent unit neural network random forest
下载PDF
Multi-Scale Convolutional Gated Recurrent Unit Networks for Tool Wear Prediction in Smart Manufacturing 被引量:2
7
作者 Weixin Xu Huihui Miao +3 位作者 Zhibin Zhao Jinxin Liu Chuang Sun Ruqiang Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期130-145,共16页
As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symboli... As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symbolic applications of PHM technology in modern manufacturing systems and industry.In this paper,a multi-scale Convolutional Gated Recurrent Unit network(MCGRU)is proposed to address raw sensory data for tool wear prediction.At the bottom of MCGRU,six parallel and independent branches with different kernel sizes are designed to form a multi-scale convolutional neural network,which augments the adaptability to features of different time scales.These features of different scales extracted from raw data are then fed into a Deep Gated Recurrent Unit network to capture long-term dependencies and learn significant representations.At the top of the MCGRU,a fully connected layer and a regression layer are built for cutting tool wear prediction.Two case studies are performed to verify the capability and effectiveness of the proposed MCGRU network and results show that MCGRU outperforms several state-of-the-art baseline models. 展开更多
关键词 Tool wear prediction MULTI-SCALE Convolutional neural networks gated recurrent unit
下载PDF
Stacking Ensemble Learning-Based Convolutional Gated Recurrent Neural Network for Diabetes Miletus
8
作者 G.Geetha K.Mohana Prasad 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期703-718,共16页
Diabetes mellitus is a metabolic disease in which blood glucose levels rise as a result of pancreatic insulin production failure.It causes hyperglycemia and chronic multiorgan dysfunction,including blindness,renal fai... Diabetes mellitus is a metabolic disease in which blood glucose levels rise as a result of pancreatic insulin production failure.It causes hyperglycemia and chronic multiorgan dysfunction,including blindness,renal failure,and cardi-ovascular disease,if left untreated.One of the essential checks that are needed to be performed frequently in Type 1 Diabetes Mellitus is a blood test,this procedure involves extracting blood quite frequently,which leads to subject discomfort increasing the possibility of infection when the procedure is often recurring.Exist-ing methods used for diabetes classification have less classification accuracy and suffer from vanishing gradient problems,to overcome these issues,we proposed stacking ensemble learning-based convolutional gated recurrent neural network(CGRNN)Metamodel algorithm.Our proposed method initially performs outlier detection to remove outlier data,using the Gaussian distribution method,and the Box-cox method is used to correctly order the dataset.After the outliers’detec-tion,the missing values are replaced by the data’s mean rather than their elimina-tion.In the stacking ensemble base model,multiple machine learning algorithms like Naïve Bayes,Bagging with random forest,and Adaboost Decision tree have been employed.CGRNN Meta model uses two hidden layers Long-Short-Time Memory(LSTM)and Gated Recurrent Unit(GRU)to calculate the weight matrix for diabetes prediction.Finally,the calculated weight matrix is passed to the soft-max function in the output layer to produce the diabetes prediction results.By using LSTM-based CG-RNN,the mean square error(MSE)value is 0.016 and the obtained accuracy is 91.33%. 展开更多
关键词 Diabetes mellitus convolutional gated recurrent neural network Gaussian distribution box-cox predict diabetes
下载PDF
Machine learning for pore-water pressure time-series prediction:Application of recurrent neural networks 被引量:18
9
作者 Xin Wei Lulu Zhang +2 位作者 Hao-Qing Yang Limin Zhang Yang-Ping Yao 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期453-467,共15页
Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicabilit... Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicability and advantages of recurrent neural networks(RNNs)on PWP prediction,three variants of RNNs,i.e.,standard RNN,long short-term memory(LSTM)and gated recurrent unit(GRU)are adopted and compared with a traditional static artificial neural network(ANN),i.e.,multi-layer perceptron(MLP).Measurements of rainfall and PWP of representative piezometers from a fully instrumented natural slope in Hong Kong are used to establish the prediction models.The coefficient of determination(R^2)and root mean square error(RMSE)are used for model evaluations.The influence of input time series length on the model performance is investigated.The results reveal that MLP can provide acceptable performance but is not robust.The uncertainty bounds of RMSE of the MLP model range from 0.24 kPa to 1.12 k Pa for the selected two piezometers.The standard RNN can perform better but the robustness is slightly affected when there are significant time lags between PWP changes and rainfall.The GRU and LSTM models can provide more precise and robust predictions than the standard RNN.The effects of the hidden layer structure and the dropout technique are investigated.The single-layer GRU is accurate enough for PWP prediction,whereas a double-layer GRU brings extra time cost with little accuracy improvement.The dropout technique is essential to overfitting prevention and improvement of accuracy. 展开更多
关键词 Pore-water pressure SLOPE Multi-layer perceptron recurrent neural networks Long short-term memory gated recurrent unit
下载PDF
Practical Options for Adopting Recurrent Neural Network and Its Variants on Remaining Useful Life Prediction 被引量:2
10
作者 Youdao Wang Yifan Zhao Sri Addepalli 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期32-51,共20页
The remaining useful life(RUL)of a system is generally predicted by utilising the data collected from the sensors that continuously monitor different indicators.Recently,different deep learning(DL)techniques have been... The remaining useful life(RUL)of a system is generally predicted by utilising the data collected from the sensors that continuously monitor different indicators.Recently,different deep learning(DL)techniques have been used for RUL prediction and achieved great success.Because the data is often time-sequential,recurrent neural network(RNN)has attracted significant interests due to its efficiency in dealing with such data.This paper systematically reviews RNN and its variants for RUL prediction,with a specific focus on understanding how different components(e.g.,types of optimisers and activation functions)or parameters(e.g.,sequence length,neuron quantities)affect their performance.After that,a case study using the well-studied NASA’s C-MAPSS dataset is presented to quantitatively evaluate the influence of various state-of-the-art RNN structures on the RUL prediction performance.The result suggests that the variant methods usually perform better than the original RNN,and among which,Bi-directional Long Short-Term Memory generally has the best performance in terms of stability,precision and accuracy.Certain model structures may fail to produce valid RUL prediction result due to the gradient vanishing or gradient exploring problem if the parameters are not chosen appropriately.It is concluded that parameter tuning is a crucial step to achieve optimal prediction performance. 展开更多
关键词 Remaining useful life prediction Deep learning recurrent neural network Long short-term memory Bi-directional long short-term memory gated recurrent unit
下载PDF
Gated recurrent unit model for a sequence tagging problem 被引量:1
11
作者 Rekia Kadari Zhang Yu +1 位作者 Zhang Weinan Liu Ting 《High Technology Letters》 EI CAS 2019年第1期81-87,共7页
Combinatory categorial grammer(CCG) supertagging is an important subtask that takes place before full parsing and can benefit many natural language processing(NLP) tasks like question answering and machine translation... Combinatory categorial grammer(CCG) supertagging is an important subtask that takes place before full parsing and can benefit many natural language processing(NLP) tasks like question answering and machine translation. CCG supertagging can be regarded as a sequence labeling problem that remains a challenging problem where each word is assigned to a CCG lexical category and the number of the probably associated CCG supertags to each word is large. To address this, recently recurrent neural networks(RNNs), as extremely powerful sequential models, have been proposed for CCG supertagging and achieved good performances. In this paper, a variant of recurrent networks is proposed whose design makes it much easier to train and memorize information for long range dependencies based on gated recurrent units(GRUs), which have been recently introduced on some but not all tasks. Results of the experiments revealed the effectiveness of the proposed method on the CCGBank datasets and show that the model has comparable accuracy with the previously proposed models for CCG supertagging. 展开更多
关键词 combinatory categorial grammer (CCG) CCG supertagging DEEP LEARNING gateD recurrent unit (gru)
下载PDF
一种基于注意力机制的BERT-CNN-GRU检测方法
12
作者 郑雅洲 刘万平 黄东 《计算机工程》 北大核心 2025年第1期258-268,共11页
针对现有检测方法对短域名检测性能普遍较差的问题,提出一种BERT-CNN-GRU结合注意力机制的检测方法。通过BERT提取域名的有效特征和字符间组成逻辑,根据并行的融合简化注意力的卷积神经网络(CNN)和基于多头注意力机制的门控循环单元(GRU... 针对现有检测方法对短域名检测性能普遍较差的问题,提出一种BERT-CNN-GRU结合注意力机制的检测方法。通过BERT提取域名的有效特征和字符间组成逻辑,根据并行的融合简化注意力的卷积神经网络(CNN)和基于多头注意力机制的门控循环单元(GRU)提取域名深度特征。CNN使用n-gram排布的方式提取不同层次的域名信息,并采用批标准化(BN)对卷积结果进行优化。GRU能够更好地获取前后域名的组成差异,多头注意力机制在捕获域名内部的组成关系方面表现出色。将并行检测网络输出的结果进行拼接,最大限度地发挥两种网络的优势,并采用局部损失函数聚焦域名分类问题,提高分类性能。实验结果表明,该方法在二分类上达到了最优效果,在短域名多分类数据集上15分类的加权F1值达到了86.21%,比BiLSTM-Seq-Attention模型提高了0.88百分点,在UMUDGA数据集上50分类的加权F1值达到了85.51%,比BiLSTM-Seq-Attention模型提高了0.45百分点。此外,该模型对变体域名和单词域名生成算法(DGA)检测性能较好,具有处理域名数据分布不平衡的能力和更广泛的检测能力。 展开更多
关键词 恶意短域名 BERT预训练 批标准化 注意力机制 门控循环单元 并行卷积神经网络
下载PDF
基于3DGRU-EKF的锂电池SOC估算
13
作者 丁蒋诚 余先涛 +1 位作者 伍晨阳 何嘉鹏 《自动化与仪表》 2025年第1期1-5,10,共6页
电池荷电状态(state of charge,SOC)的准确估计近年来成为新能源发展的重中之重,也是电池管理系统(BMS)中最核心的部分。针对改进卡尔曼滤波算法(EKF)与门控循环单元神经网络算法(GRU)的缺陷,提出了一种基于3DGRU?鄄EKF的改进SOC估算算... 电池荷电状态(state of charge,SOC)的准确估计近年来成为新能源发展的重中之重,也是电池管理系统(BMS)中最核心的部分。针对改进卡尔曼滤波算法(EKF)与门控循环单元神经网络算法(GRU)的缺陷,提出了一种基于3DGRU?鄄EKF的改进SOC估算算法。首先使用二阶RC电池等效模型,利用复合脉冲功率特性测试(HPPC)进行电池参数辨识;随后对电池模型进行状态空间方程的建立,并利用EKF算法进行更新迭代来估算电池的SOC,可以得到卡尔曼增益与SOC估算误差;最后将2个量结合HPPC工况下的电压与电流作为3DGRU网络的输入,真实的SOC作为输出来训练神经网络。实验结果表明,提出的3DGRU?鄄EKF算法估算SOC的均方根误差(RMSE)与平均绝对误差(MAE)均小于0.5%,具有良好的效果。 展开更多
关键词 锂电池 荷电状态 扩展卡尔曼滤波 门控循环神经网络
下载PDF
Turnout fault prediction method based on gated recurrent units model
14
作者 ZHANG Guorui SI Yongbo +1 位作者 CHEN Guangwu WEI Zongshou 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第3期304-313,共10页
Turnout is one of the important signal infrastructure equipment,which will directly affect the safety and efficiency of driving.Base on analysis of the power curve of the turnout,we extract and select the time domain ... Turnout is one of the important signal infrastructure equipment,which will directly affect the safety and efficiency of driving.Base on analysis of the power curve of the turnout,we extract and select the time domain and Haar wavelet transform characteristics of the curve firstly.Then the correlation between the degradation state and the fault state is established by using the clustering algorithm and the Pearson correlation coefficient.Finally,the convolutional neural network(CNN)and the gated recurrent unit(GRU)are used to establish the state prediction model of the turnout to realize the failure prediction.The CNN can directly extract features from the original data of the turnout and reduce the dimension,which simplifies the prediction process.Due to its unique gate structure and time series processing features,GRU has certain advantages over the traditional forecasting methods in terms of prediction accuracy and time.The experimental results show that the accuracy of prediction can reach 94.2%when the feature matrix adopts 40-dimensional input and iterates 50 times. 展开更多
关键词 TURNOUT CLUSTERING convolutinal neural network(CNN) gated recurrent unit(gru) fault prediction
下载PDF
Speech Separation Algorithm Using Gated Recurrent Network Based on Microphone Array
15
作者 Xiaoyan Zhao Lin Zhou +2 位作者 Yue Xie Ying Tong Jingang Shi 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3087-3100,共14页
Speech separation is an active research topic that plays an important role in numerous applications,such as speaker recognition,hearing pros-thesis,and autonomous robots.Many algorithms have been put forward to improv... Speech separation is an active research topic that plays an important role in numerous applications,such as speaker recognition,hearing pros-thesis,and autonomous robots.Many algorithms have been put forward to improve separation performance.However,speech separation in reverberant noisy environment is still a challenging task.To address this,a novel speech separation algorithm using gate recurrent unit(GRU)network based on microphone array has been proposed in this paper.The main aim of the proposed algorithm is to improve the separation performance and reduce the computational cost.The proposed algorithm extracts the sub-band steered response power-phase transform(SRP-PHAT)weighted by gammatone filter as the speech separation feature due to its discriminative and robust spatial position in formation.Since the GRU net work has the advantage of processing time series data with faster training speed and fewer training parameters,the GRU model is adopted to process the separation featuresof several sequential frames in the same sub-band to estimate the ideal Ratio Masking(IRM).The proposed algorithm decomposes the mixture signals into time-frequency(TF)units using gammatone filter bank in the frequency domain,and the target speech is reconstructed in the frequency domain by masking the mixture signal according to the estimated IRM.The operations of decomposing the mixture signal and reconstructing the target signal are completed in the frequency domain which can reduce the total computational cost.Experimental results demonstrate that the proposed algorithm realizes omnidirectional speech sep-aration in noisy and reverberant environments,provides good performance in terms of speech quality and intelligibility,and has the generalization capacity to reverberate. 展开更多
关键词 Microphone array speech separation gate recurrent unit network gammatone sub-band steered response power-phase transform spatial spectrum
下载PDF
融合CNN-BiGRU和注意力机制的网络入侵检测模型 被引量:3
16
作者 杨晓文 张健 +1 位作者 况立群 庞敏 《信息安全研究》 CSCD 北大核心 2024年第3期202-208,共7页
为提高网络入侵检测模型特征提取能力和分类准确率,提出了一种融合双向门控循环单元(CNN-BiGRU)和注意力机制的网络入侵检测模型.使用CNN有效提取流量数据集中的非线性特征;双向门控循环单元(BiGRU)提取数据集中的时序特征,最后融合注... 为提高网络入侵检测模型特征提取能力和分类准确率,提出了一种融合双向门控循环单元(CNN-BiGRU)和注意力机制的网络入侵检测模型.使用CNN有效提取流量数据集中的非线性特征;双向门控循环单元(BiGRU)提取数据集中的时序特征,最后融合注意力机制对不同类型流量数据通过加权的方式进行重要程度的区分,从而整体提高该模型特征提取与分类的性能.实验结果表明:其整体精确率比双向长短期记忆网络(BiLSTM)模型提升了2.25%.K折交叉验证结果表明:该模型泛化性能良好,避免了过拟合现象的发生,印证了该模型的有效性与合理性. 展开更多
关键词 网络入侵检测 卷积神经网络 双向门控循环单元 注意力机制 深度学习
下载PDF
基于KPCA-CNN-DBiGRU模型的短期负荷预测方法 被引量:4
17
作者 陈晓红 王辉 李喜华 《管理工程学报》 CSSCI CSCD 北大核心 2024年第2期221-231,共11页
本文针对已有神经网络模型在短期负荷预测中输入维度过高、预测误差较大等问题,提出了一种结合核主成分分析、卷积神经网络和深度双向门控循环单元的短期负荷预测方法。先运用核主成分分析法对原始高维输入变量进行降维,再通过卷积深度... 本文针对已有神经网络模型在短期负荷预测中输入维度过高、预测误差较大等问题,提出了一种结合核主成分分析、卷积神经网络和深度双向门控循环单元的短期负荷预测方法。先运用核主成分分析法对原始高维输入变量进行降维,再通过卷积深度双向门控循环单元网络模型进行负荷预测。以第九届全国电工数学建模竞赛试题A题中的负荷数据作为实际算例,结果表明所提方法较降维之前预测误差大大降低,与已有预测方法相比也有大幅的误差降低。 展开更多
关键词 核主成分分析 卷积神经网络 双向门控循环单元 负荷预测
下载PDF
基于特征选择及ISSA-CNN-BiGRU的短期风功率预测 被引量:4
18
作者 王瑞 徐新超 逯静 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期228-239,共12页
针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD... 针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD)将原始功率分解为一组包含不同信息的子分量,以降低原始功率序列的非平稳性,提升可预测性,同时通过观察中心频率方式确定模态分解数。其次,对每一分量采用随机森林(RF)特征重要度的方法进行特征选择,从风速、风向、温度、空气密度等气象特征因素中,选取对各个分量预测贡献度较高的影响因素组成输入特征向量。然后,建立各分量的CNN-BiGRU预测模型,针对神经网络算法参数难调、手动配置参数随机性大的问题,利用ISSA对模型超参数寻优,自适应搜寻最优参数组合。最后,叠加各分量的预测值,得到最终的预测结果。以中国内蒙古某风电场实际数据进行仿真实验,与多种单一及组合预测方法进行对比,结果表明,本文所提方法相比于其他方法具有更高的预测精度,其平均绝对百分比误差值达到2.644 0%;在其他4个数据集上进行的模型准确性及泛化性验证结果显示,模型平均绝对百分比误差值分别为4.385 3%、3.174 9%、1.576 1%和1.358 8%,均保持在5.000 0%以内,证明本文所提方法具有较好的预测精度及泛化能力。 展开更多
关键词 短期风功率预测 变分模态分解 特征选择 改进麻雀搜索算法 卷积神经网络 双向门控循环单元
下载PDF
基于CNN-GRU-ISSA-XGBoost的短期光伏功率预测 被引量:1
19
作者 岳有军 吴明沅 +1 位作者 王红君 赵辉 《南京信息工程大学学报》 CAS 北大核心 2024年第2期231-238,共8页
针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率... 针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率预测组合模型.首先去除历史数据中的异常值并对其进行归一化处理,利用主成分分析法(PCA)进行特征选取,以便更好地识别影响光伏功率的关键因素.然后采用CNN网络提取数据的空间特征,再经过GRU网络提取时间特征,针对XGBoost模型手动配置参数困难、随机性大的问题,利用ISSA对模型超参数寻优.最后对两种方法预测的结果用误差倒数法减小误差的同时对权重进行更新,得到新的预测值,从而完成对光伏功率的预测.实验结果表明,所提出的CNN-GRU-ISSA-XGBoost组合模型具有更强的适应性和更高的精度. 展开更多
关键词 光伏功率预测 改进麻雀搜索算法 卷积神经网络 门控循环单元 XGBoost模型
下载PDF
基于VMD-ISSA-GRU组合模型的短期风电功率预测 被引量:2
20
作者 王辉 邹智超 +2 位作者 李欣 吴作辉 周珂锐 《热力发电》 CAS CSCD 北大核心 2024年第5期122-131,共10页
为解决风速不确定性和波动性造成风电功率预测精度不高的问题,提出一种基于变分模态分解(VMD)、改进麻雀搜索算法(ISSA)和门控循环神经网络(GRU)的VMD-ISSA-GRU组合模型。首先,利用中心频率法确定采用VMD分解后的模态分量个数,这样有效... 为解决风速不确定性和波动性造成风电功率预测精度不高的问题,提出一种基于变分模态分解(VMD)、改进麻雀搜索算法(ISSA)和门控循环神经网络(GRU)的VMD-ISSA-GRU组合模型。首先,利用中心频率法确定采用VMD分解后的模态分量个数,这样有效避免了过分解或者分解不充分。其次引入混沌映射、非线性递减权重以及一个突变策略来改进麻雀搜索算法,用于优化门控循环神经网络,然后对分解得到的各个子序列建立ISSA-GRU预测模型,最后叠加每个子序列的预测值得到最终的预测值。将该模型用于实际风电功率预测,实验结果表明:VMD-ISSA-GRU组合模型的平均绝对误差、平均绝对百分比误差、均方根误差分别为1.2118MW、1.8900及1.5916MW;相较于传统的GRU、长短时记忆(LSTM)神经网络、BiLSTM(Bi-directional LSTM)神经网络模型以及其他组合模型在预测精度上都有明显的提升,能很好地解决风电功率预测精度不高的问题. 展开更多
关键词 风电功率预测 变分模态分解 改进麻雀搜索算法 门控循环神经网络 超参数
下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部