Two SiO_2/Si interface structures,which are described by the double bonded model(DBM) and the bridge oxygen model(BOM),have been theoretically studied via first-principle calculations.First-principle simulations d...Two SiO_2/Si interface structures,which are described by the double bonded model(DBM) and the bridge oxygen model(BOM),have been theoretically studied via first-principle calculations.First-principle simulations demonstrate that the width of the transition region for the interface structure described by DBM is larger than that for the interface structure described by BOM.Such a difference will result in a difference in the gate leakage current. Tunneling current calculation demonstrates that the SiO_2/Si interface structure described by DBM leads to a larger gate leakage current.展开更多
An analytical direct tunneling gate current model for cylindrical surrounding gate(CSG) MOSFETs with high-k gate stacks is developed. It is found that the direct tunneling gate current is a strong function of the g...An analytical direct tunneling gate current model for cylindrical surrounding gate(CSG) MOSFETs with high-k gate stacks is developed. It is found that the direct tunneling gate current is a strong function of the gate's oxide thickness, but that it is less affected by the change in channel radius. It is also revealed that when the thickness of the equivalent oxide is constant, the thinner the first layer, the smaller the direct tunneling gate current.Moreover, it can be seen that the dielectric with a higher dielectric constant shows a lower tunneling current than expected. The accuracy of the analytical model is verified by the good agreement of its results with those obtained by the three-dimensional numerical device simulator ISE.展开更多
A junctionless transistor is emerging as a most promising device for the future technology in the decananometer regime. To explore and exploit the behavior completely, the understanding of gate tunneling current is of...A junctionless transistor is emerging as a most promising device for the future technology in the decananometer regime. To explore and exploit the behavior completely, the understanding of gate tunneling current is of great importance. In this paper we have explored the gate tunneling current of a double gate junctionless transistor(DGJLT) for the first time through an analytical model, to meet the future requirement of expected high-k gate dielectric material that could replace SiO2. We therefore present the high-k gate stacked architecture of the DGJLT to minimize the gate tunneling current. This paper also demonstrates the impact of conduction band offset,workfunction difference and k-values on the tunneling current of the DGJLT.展开更多
A novel nanoscale MOSFET with a source/drain-to-gate non-overlapped and high-k spacer structure has been demonstrated to reduce the gate leakage current for the first time.The gate leakage behaviour of the novel MOSFE...A novel nanoscale MOSFET with a source/drain-to-gate non-overlapped and high-k spacer structure has been demonstrated to reduce the gate leakage current for the first time.The gate leakage behaviour of the novel MOSFET structure has been investigated with the help of a compact analytical model and Sentaurus simulation. A fringing gate electric field through the dielectric spacer induces an inversion layer in the non-overlap region to act as an extended S/D(source/drain) region.It is found that an optimal source/drain-to-gate non-overlapped and high-A:spacer structure has reduced the gate leakage current to a great extent as compared to those of an overlapped structure.Further,the proposed structure had improved off current,subthreshold slope and drain induced barrier lowering(DIBL) characteristics.It is concluded that this structure solves the problem of high leakage current without introducing extra series resistance.展开更多
The current through a metal-semiconductor junction is mainly due to the majority carriers. Three distinctly different mechanisms exist in a Schottky diode: diffusion of the semiconductor carriers in metal, thermionic...The current through a metal-semiconductor junction is mainly due to the majority carriers. Three distinctly different mechanisms exist in a Schottky diode: diffusion of the semiconductor carriers in metal, thermionic emission-diffusion (TED) of carriers through a Schottky gate, and a mechanical quantum that pierces a tunnel through the gate. The system was solved by using a coupled Poisson-Boltzmann algorithm. Schottky BH is defined as the difference in energy between the Fermi level and the metal band carrier majority of the metal--semiconductor junction to the semiconductor contacts. The insulating layer converts the MS device in an MIS device and has a strong influence on its current-voltage (I-V) and the parameters ofa Schottky barrier from 3.7 to 15 eV. There are several possible reasons for the error that causes a deviation of the ideal behaviour of Schottky diodes with and without an interracial insulator layer. These include the particular distribution of interface states, the series resis- tance, bias voltage and temperature. The GaAs and its large concentration values of trap centers will participate in an increase in the process ofthermionic electrons and holes, which will in turn act on the I-V characteristic of the diode, and an overflow maximum value [NT = 3 × 10^20] is obtained. The I-V characteristics of Schottky diodes are in the hypothesis of a parabolic summit.展开更多
文摘Two SiO_2/Si interface structures,which are described by the double bonded model(DBM) and the bridge oxygen model(BOM),have been theoretically studied via first-principle calculations.First-principle simulations demonstrate that the width of the transition region for the interface structure described by DBM is larger than that for the interface structure described by BOM.Such a difference will result in a difference in the gate leakage current. Tunneling current calculation demonstrates that the SiO_2/Si interface structure described by DBM leads to a larger gate leakage current.
基金Project supported by the National Natural Science Foundation of China(Nos.61076101,61204092)the Fundamental Research Fundsfor the Central Universities of China(No.K50511250001)
文摘An analytical direct tunneling gate current model for cylindrical surrounding gate(CSG) MOSFETs with high-k gate stacks is developed. It is found that the direct tunneling gate current is a strong function of the gate's oxide thickness, but that it is less affected by the change in channel radius. It is also revealed that when the thickness of the equivalent oxide is constant, the thinner the first layer, the smaller the direct tunneling gate current.Moreover, it can be seen that the dielectric with a higher dielectric constant shows a lower tunneling current than expected. The accuracy of the analytical model is verified by the good agreement of its results with those obtained by the three-dimensional numerical device simulator ISE.
文摘A junctionless transistor is emerging as a most promising device for the future technology in the decananometer regime. To explore and exploit the behavior completely, the understanding of gate tunneling current is of great importance. In this paper we have explored the gate tunneling current of a double gate junctionless transistor(DGJLT) for the first time through an analytical model, to meet the future requirement of expected high-k gate dielectric material that could replace SiO2. We therefore present the high-k gate stacked architecture of the DGJLT to minimize the gate tunneling current. This paper also demonstrates the impact of conduction band offset,workfunction difference and k-values on the tunneling current of the DGJLT.
文摘A novel nanoscale MOSFET with a source/drain-to-gate non-overlapped and high-k spacer structure has been demonstrated to reduce the gate leakage current for the first time.The gate leakage behaviour of the novel MOSFET structure has been investigated with the help of a compact analytical model and Sentaurus simulation. A fringing gate electric field through the dielectric spacer induces an inversion layer in the non-overlap region to act as an extended S/D(source/drain) region.It is found that an optimal source/drain-to-gate non-overlapped and high-A:spacer structure has reduced the gate leakage current to a great extent as compared to those of an overlapped structure.Further,the proposed structure had improved off current,subthreshold slope and drain induced barrier lowering(DIBL) characteristics.It is concluded that this structure solves the problem of high leakage current without introducing extra series resistance.
文摘The current through a metal-semiconductor junction is mainly due to the majority carriers. Three distinctly different mechanisms exist in a Schottky diode: diffusion of the semiconductor carriers in metal, thermionic emission-diffusion (TED) of carriers through a Schottky gate, and a mechanical quantum that pierces a tunnel through the gate. The system was solved by using a coupled Poisson-Boltzmann algorithm. Schottky BH is defined as the difference in energy between the Fermi level and the metal band carrier majority of the metal--semiconductor junction to the semiconductor contacts. The insulating layer converts the MS device in an MIS device and has a strong influence on its current-voltage (I-V) and the parameters ofa Schottky barrier from 3.7 to 15 eV. There are several possible reasons for the error that causes a deviation of the ideal behaviour of Schottky diodes with and without an interracial insulator layer. These include the particular distribution of interface states, the series resis- tance, bias voltage and temperature. The GaAs and its large concentration values of trap centers will participate in an increase in the process ofthermionic electrons and holes, which will in turn act on the I-V characteristic of the diode, and an overflow maximum value [NT = 3 × 10^20] is obtained. The I-V characteristics of Schottky diodes are in the hypothesis of a parabolic summit.