期刊文献+
共找到535篇文章
< 1 2 27 >
每页显示 20 50 100
Stacking Ensemble Learning-Based Convolutional Gated Recurrent Neural Network for Diabetes Miletus
1
作者 G.Geetha K.Mohana Prasad 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期703-718,共16页
Diabetes mellitus is a metabolic disease in which blood glucose levels rise as a result of pancreatic insulin production failure.It causes hyperglycemia and chronic multiorgan dysfunction,including blindness,renal fai... Diabetes mellitus is a metabolic disease in which blood glucose levels rise as a result of pancreatic insulin production failure.It causes hyperglycemia and chronic multiorgan dysfunction,including blindness,renal failure,and cardi-ovascular disease,if left untreated.One of the essential checks that are needed to be performed frequently in Type 1 Diabetes Mellitus is a blood test,this procedure involves extracting blood quite frequently,which leads to subject discomfort increasing the possibility of infection when the procedure is often recurring.Exist-ing methods used for diabetes classification have less classification accuracy and suffer from vanishing gradient problems,to overcome these issues,we proposed stacking ensemble learning-based convolutional gated recurrent neural network(CGRNN)Metamodel algorithm.Our proposed method initially performs outlier detection to remove outlier data,using the Gaussian distribution method,and the Box-cox method is used to correctly order the dataset.After the outliers’detec-tion,the missing values are replaced by the data’s mean rather than their elimina-tion.In the stacking ensemble base model,multiple machine learning algorithms like Naïve Bayes,Bagging with random forest,and Adaboost Decision tree have been employed.CGRNN Meta model uses two hidden layers Long-Short-Time Memory(LSTM)and Gated Recurrent Unit(GRU)to calculate the weight matrix for diabetes prediction.Finally,the calculated weight matrix is passed to the soft-max function in the output layer to produce the diabetes prediction results.By using LSTM-based CG-RNN,the mean square error(MSE)value is 0.016 and the obtained accuracy is 91.33%. 展开更多
关键词 Diabetes mellitus convolutional gated recurrent neural network Gaussian distribution box-cox predict diabetes
下载PDF
Lightweight and highly robust memristor-based hybrid neural networks for electroencephalogram signal processing
2
作者 童霈文 徐晖 +5 位作者 孙毅 汪泳州 彭杰 廖岑 王伟 李清江 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期582-590,共9页
Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor ... Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor one-resistor(1T1R)memristor arrays is limited by the non-ideality of the devices,which prevents the hardware implementation of large and complex networks.In this work,we propose the depthwise separable convolution and bidirectional gate recurrent unit(DSC-BiGRU)network,a lightweight and highly robust hybrid neural network based on 1T1R arrays that enables efficient processing of EEG signals in the temporal,frequency and spatial domains by hybridizing DSC and BiGRU blocks.The network size is reduced and the network robustness is improved while ensuring the network classification accuracy.In the simulation,the measured non-idealities of the 1T1R array are brought into the network through statistical analysis.Compared with traditional convolutional networks,the network parameters are reduced by 95%and the network classification accuracy is improved by 21%at a 95%array yield rate and 5%tolerable error.This work demonstrates that lightweight and highly robust networks based on memristor arrays hold great promise for applications that rely on low consumption and high efficiency. 展开更多
关键词 MEMRISTOR LIGHTWEIGHT ROBUST hybrid neural networks depthwise separable convolution bidirectional gate recurrent unit(BiGRU) one-transistor one-resistor(1T1R)arrays
下载PDF
Multi-Scale Convolutional Gated Recurrent Unit Networks for Tool Wear Prediction in Smart Manufacturing 被引量:2
3
作者 Weixin Xu Huihui Miao +3 位作者 Zhibin Zhao Jinxin Liu Chuang Sun Ruqiang Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期130-145,共16页
As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symboli... As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symbolic applications of PHM technology in modern manufacturing systems and industry.In this paper,a multi-scale Convolutional Gated Recurrent Unit network(MCGRU)is proposed to address raw sensory data for tool wear prediction.At the bottom of MCGRU,six parallel and independent branches with different kernel sizes are designed to form a multi-scale convolutional neural network,which augments the adaptability to features of different time scales.These features of different scales extracted from raw data are then fed into a Deep Gated Recurrent Unit network to capture long-term dependencies and learn significant representations.At the top of the MCGRU,a fully connected layer and a regression layer are built for cutting tool wear prediction.Two case studies are performed to verify the capability and effectiveness of the proposed MCGRU network and results show that MCGRU outperforms several state-of-the-art baseline models. 展开更多
关键词 Tool wear prediction MULTI-SCALE convolutional neural networks gated recurrent unit
下载PDF
Convolutional neural network for transient grating frequency-resolved optical gating trace retrieval and its algorithm optimization 被引量:1
4
作者 Siyuan Xu Xiaoxian Zhu +7 位作者 Ji Wang Yuanfeng Li Yitan Gao Kun Zhao Jiangfeng Zhu Dacheng Zhang Yunlin Chen Zhiyi Wei 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期586-590,共5页
A convolutional neural network is employed to retrieve the time-domain envelop and phase of few-cycle femtosecond pulses from transient-grating frequency-resolved optical gating(TG-FROG) traces.We use theoretically ge... A convolutional neural network is employed to retrieve the time-domain envelop and phase of few-cycle femtosecond pulses from transient-grating frequency-resolved optical gating(TG-FROG) traces.We use theoretically generated TGFROG traces to complete supervised trainings of the convolutional neural networks,then use similarly generated traces not included in the training dataset to test how well the networks are trained.Accurate retrieval of such traces by the neural network is realized.In our case,we find that networks with exponential linear unit(ELU) activation function perform better than those with leaky rectified linear unit(LRELU) and scaled exponential linear unit(SELU).Finally,the issues that need to be addressed for the retrieval of experimental data by this method are discussed. 展开更多
关键词 transient-grating frequency-resolved optical gating convolutional neural network activation function phase retrieval algorithm
下载PDF
融合GCNN与GRU的异常实体识别方法
5
作者 叶瀚 孙海春 李欣 《计算机科学与探索》 CSCD 北大核心 2023年第8期1938-1948,共11页
当前的命名实体识别(NER)模型能够识别位于正确位置且符合语法表达的实体,却无法指出句子中的实体缺失与位于错误位置的实体,无法满足信息处理与归档分析中对于检测文本实体信息完整全面的要求。通过考察异常实体的识别依赖上下文相互... 当前的命名实体识别(NER)模型能够识别位于正确位置且符合语法表达的实体,却无法指出句子中的实体缺失与位于错误位置的实体,无法满足信息处理与归档分析中对于检测文本实体信息完整全面的要求。通过考察异常实体的识别依赖上下文相互联系语义特征的具体特点,提出以基于预训练语言模型的命名实体识别模型架构为基础,融合门控卷积神经网络(GCNN)与门控循环网络(GRU)的实体位置异常与实体缺失异常检测方法(NER-EAD)及其训练数据构造方法。其中门控卷积网络提取特定字符上下文特征联系以更好识别实体异常。融合卷积神经网络结构和门控循环神经网络的语义特征输出可全面提取正常实体与异常实体的特征,实现了正常、异常实体识别结果同时输出。实验表明NER-EAD在正常实体、实体位置异常和实体缺失异常的识别平均F1分别达到90.56%、85.56%和80.92%,超越了已有命名实体识别模型架构。最后通过消融实验证明了GCNN与GRU融合网络的语义特征提取能力。 展开更多
关键词 命名实体识别(NER) 门控卷积神经网络(gcnn) 门控循环网络(GRU) 异常检测
下载PDF
Text Understanding with a Hybrid Neural Network Based Learning
6
作者 Shen Gao Huaping Zhang Kai Gao 《国际计算机前沿大会会议论文集》 2017年第2期26-28,共3页
Teaching machine to understand needs to design an algorithm for the machine to comprehend documents. As some traditional methods cannot learn the inherent characters effectively, this paper presents a new hybrid neura... Teaching machine to understand needs to design an algorithm for the machine to comprehend documents. As some traditional methods cannot learn the inherent characters effectively, this paper presents a new hybrid neural network model to extract sentence-level summarization from single document,and it allows us to develop an attention based deep neural network that can learn to understand documents with minimal prior knowledge. The proposed model composed of multiple processing layers can learn the representations of features.Word embedding is used to learn continuous word representations for constructing sentence as input to convolutional neural network. The recurrent neural network is also used to label the sentences from the original document, and the proposed BAM-GRU model is more efficient. Experimental results show the feasibility of the approach. Some problems and further works are also present in the end. 展开更多
关键词 Deep LEARNING convolutional neural network RECURRENT neural network Word EMBEDDING gated RECURRENT unit
下载PDF
融合CNN-BiGRU和注意力机制的网络入侵检测模型 被引量:2
7
作者 杨晓文 张健 +1 位作者 况立群 庞敏 《信息安全研究》 CSCD 北大核心 2024年第3期202-208,共7页
为提高网络入侵检测模型特征提取能力和分类准确率,提出了一种融合双向门控循环单元(CNN-BiGRU)和注意力机制的网络入侵检测模型.使用CNN有效提取流量数据集中的非线性特征;双向门控循环单元(BiGRU)提取数据集中的时序特征,最后融合注... 为提高网络入侵检测模型特征提取能力和分类准确率,提出了一种融合双向门控循环单元(CNN-BiGRU)和注意力机制的网络入侵检测模型.使用CNN有效提取流量数据集中的非线性特征;双向门控循环单元(BiGRU)提取数据集中的时序特征,最后融合注意力机制对不同类型流量数据通过加权的方式进行重要程度的区分,从而整体提高该模型特征提取与分类的性能.实验结果表明:其整体精确率比双向长短期记忆网络(BiLSTM)模型提升了2.25%.K折交叉验证结果表明:该模型泛化性能良好,避免了过拟合现象的发生,印证了该模型的有效性与合理性. 展开更多
关键词 网络入侵检测 卷积神经网络 双向门控循环单元 注意力机制 深度学习
下载PDF
基于KPCA-CNN-DBiGRU模型的短期负荷预测方法 被引量:3
8
作者 陈晓红 王辉 李喜华 《管理工程学报》 CSCD 北大核心 2024年第2期221-231,共11页
本文针对已有神经网络模型在短期负荷预测中输入维度过高、预测误差较大等问题,提出了一种结合核主成分分析、卷积神经网络和深度双向门控循环单元的短期负荷预测方法。先运用核主成分分析法对原始高维输入变量进行降维,再通过卷积深度... 本文针对已有神经网络模型在短期负荷预测中输入维度过高、预测误差较大等问题,提出了一种结合核主成分分析、卷积神经网络和深度双向门控循环单元的短期负荷预测方法。先运用核主成分分析法对原始高维输入变量进行降维,再通过卷积深度双向门控循环单元网络模型进行负荷预测。以第九届全国电工数学建模竞赛试题A题中的负荷数据作为实际算例,结果表明所提方法较降维之前预测误差大大降低,与已有预测方法相比也有大幅的误差降低。 展开更多
关键词 核主成分分析 卷积神经网络 双向门控循环单元 负荷预测
下载PDF
基于特征选择及ISSA-CNN-BiGRU的短期风功率预测 被引量:2
9
作者 王瑞 徐新超 逯静 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期228-239,共12页
针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD... 针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD)将原始功率分解为一组包含不同信息的子分量,以降低原始功率序列的非平稳性,提升可预测性,同时通过观察中心频率方式确定模态分解数。其次,对每一分量采用随机森林(RF)特征重要度的方法进行特征选择,从风速、风向、温度、空气密度等气象特征因素中,选取对各个分量预测贡献度较高的影响因素组成输入特征向量。然后,建立各分量的CNN-BiGRU预测模型,针对神经网络算法参数难调、手动配置参数随机性大的问题,利用ISSA对模型超参数寻优,自适应搜寻最优参数组合。最后,叠加各分量的预测值,得到最终的预测结果。以中国内蒙古某风电场实际数据进行仿真实验,与多种单一及组合预测方法进行对比,结果表明,本文所提方法相比于其他方法具有更高的预测精度,其平均绝对百分比误差值达到2.644 0%;在其他4个数据集上进行的模型准确性及泛化性验证结果显示,模型平均绝对百分比误差值分别为4.385 3%、3.174 9%、1.576 1%和1.358 8%,均保持在5.000 0%以内,证明本文所提方法具有较好的预测精度及泛化能力。 展开更多
关键词 短期风功率预测 变分模态分解 特征选择 改进麻雀搜索算法 卷积神经网络 双向门控循环单元
下载PDF
基于CNN-GRU-ISSA-XGBoost的短期光伏功率预测 被引量:1
10
作者 岳有军 吴明沅 +1 位作者 王红君 赵辉 《南京信息工程大学学报》 CAS 北大核心 2024年第2期231-238,共8页
针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率... 针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率预测组合模型.首先去除历史数据中的异常值并对其进行归一化处理,利用主成分分析法(PCA)进行特征选取,以便更好地识别影响光伏功率的关键因素.然后采用CNN网络提取数据的空间特征,再经过GRU网络提取时间特征,针对XGBoost模型手动配置参数困难、随机性大的问题,利用ISSA对模型超参数寻优.最后对两种方法预测的结果用误差倒数法减小误差的同时对权重进行更新,得到新的预测值,从而完成对光伏功率的预测.实验结果表明,所提出的CNN-GRU-ISSA-XGBoost组合模型具有更强的适应性和更高的精度. 展开更多
关键词 光伏功率预测 改进麻雀搜索算法 卷积神经网络 门控循环单元 XGBoost模型
下载PDF
基于改进门控循环神经网络的采煤机滚筒调高量预测 被引量:1
11
作者 齐爱玲 王雨 马宏伟 《工矿自动化》 CSCD 北大核心 2024年第2期116-123,共8页
采煤机自适应截割技术是实现综采工作面智能化开采的关键技术。针对采煤机在复杂煤层下自动截割精度较低的问题,提出了一种基于改进门控循环神经网络(GRU)的采煤机滚筒调高量预测方法。鉴于截割轨迹纵向及横向相邻数据之间的相关性,采... 采煤机自适应截割技术是实现综采工作面智能化开采的关键技术。针对采煤机在复杂煤层下自动截割精度较低的问题,提出了一种基于改进门控循环神经网络(GRU)的采煤机滚筒调高量预测方法。鉴于截割轨迹纵向及横向相邻数据之间的相关性,采用定长滑动时间窗法对获取的采煤机滚筒高度数据进行预处理,将输入数据划分为连续、大小可调的子序列,同时处理横向、纵向的特征信息。为提高模型预测效率,满足循环截割的实时性要求,提出了一种用因果卷积改进的门控循环神经网络(CC-GRU),对输入数据进行双重特征提取和双重数据过滤。CC-GRU利用因果卷积提前聚焦序列纵向的局部时间特征,以减少计算成本,提高运算速度;利用门控机制对卷积得到的特征进行序列化建模,以捕捉元素之间的长期依赖关系。实验结果表明,采用CC-GRU模型对采煤机滚筒调高量进行预测,平均绝对误差(MAE)为43.80 mm,平均绝对百分比误差(MAPE)为1.90%,均方根误差(RMSE)为50.35 mm,决定系数为0.65,预测时间仅为0.17 s;相比于长短时记忆(LSTM)神经网络、GRU、时域卷积网络(TCN),CC-GRU模型的预测速度较快且预测精度较高,能够更准确地对采煤机调高轨迹进行实时预测,为工作面煤层模型的建立和采煤机调高轨迹的预测提供了依据。 展开更多
关键词 采煤机 滚筒调高 煤岩识别 深度学习 门控循环神经网络 因果卷积
下载PDF
基于注意力机制的CNN-BiLSTM的IGBT剩余使用寿命预测 被引量:2
12
作者 张金萍 薛治伦 +3 位作者 陈航 孙培奇 高策 段宜征 《半导体技术》 CAS 北大核心 2024年第4期373-379,共7页
针对绝缘栅双极型晶体管(IGBT)可靠性问题,提出了一种融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)网络和注意力机制的剩余使用寿命(RUL)预测模型,可用于IGBT的寿命预测。模型中使用CNN提取特征参数,BiLSTM提取时序信息,注意力机制... 针对绝缘栅双极型晶体管(IGBT)可靠性问题,提出了一种融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)网络和注意力机制的剩余使用寿命(RUL)预测模型,可用于IGBT的寿命预测。模型中使用CNN提取特征参数,BiLSTM提取时序信息,注意力机制加权处理特征参数。使用IGBT加速老化数据集对提出的模型进行验证。结果表明,对比自回归差分移动平均(ARIMA)、长短期记忆(LSTM)、多层LSTM(Multi-LSTM)、 BiLSTM预测模型,在均方根误差和决定系数等评价指标方面该模型的性能最优。验证了提出的寿命预测模型对IGBT失效预测是有效的。 展开更多
关键词 绝缘栅双极型晶体管(IGBT) 失效预测 加速老化 长短期记忆(LSTM) 注意力机制 卷积神经网络(CNN)
下载PDF
基于CNN-BiGRU-Attention的短期电力负荷预测 被引量:1
13
作者 任爽 杨凯 +3 位作者 商继财 祁继明 魏翔宇 蔡永根 《电气工程学报》 CSCD 北大核心 2024年第1期344-350,共7页
针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电... 针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电力负荷预测上的不同优点,提出一种基于CNN-BiGRU-Attention的混合预测模型。该方法首先通过CNN对历史负荷和气象数据进行初步特征提取,然后利用BiGRU进一步挖掘特征数据间时序关联,再引入注意力机制,对BiGRU输出状态给与不同权重,强化关键特征,最后完成负荷预测。试验结果表明,该模型的平均绝对百分比误差(Mean absolute percentage error,MAPE)、均方根误差(Root mean square error,RMSE)、判定系数(R-square,R~2)分别为0.167%、0.057%、0.993,三项指标明显优于其他模型,具有更高的预测精度和稳定性,验证了模型在短期负荷预测中的优势。 展开更多
关键词 卷积神经网络 双向门控循环单元 注意力机制 短期电力负荷预测 混合预测模型
下载PDF
基于深度学习的盾构机土舱压力场预测方法
14
作者 张超 朱闽湘 +2 位作者 郎志雄 陈仁朋 程红战 《岩土工程学报》 EI CAS CSCD 北大核心 2024年第2期307-315,共9页
土舱压力是盾构机受力状态和掌子面稳定等核心问题中的关键因素。土舱压力具有显著的空间变异性,其形成演化机制源于装备与岩土之间的复杂耦合作用,与地质特征、掘进参数等多源参数相关。然而,现有土舱压力预测方法一般未考虑空间分布... 土舱压力是盾构机受力状态和掌子面稳定等核心问题中的关键因素。土舱压力具有显著的空间变异性,其形成演化机制源于装备与岩土之间的复杂耦合作用,与地质特征、掘进参数等多源参数相关。然而,现有土舱压力预测方法一般未考虑空间分布特征或地质参数影响。针对该问题,提出了一种基于空间分布物理特征函数导引深度学习的盾构机土舱压力场预测方法。该方法构建物理特征函数用于解耦土舱压力空间分布特征,采用卷积神经网络和门控循环单元分别提取多源参数历史信息的空间特征和特征系数的时序特征,结合多源参数实时信息对特征系数进行预测,从而实现土舱压力场的预测。以长沙地铁四号线某区段为案例,利用该方法准确预测了土舱压力空间分布实测数据,准确率高达0.98,验证了所提方法的有效性。敏感性分析表明,不同地层中土舱压力空间分布特征系数的主要敏感参数基本一致,但其敏感度随地层地质条件的变化规律差异显著,可为复杂地层盾构机土舱压力精细化调控提供参考。 展开更多
关键词 土舱压力场 卷积神经网络 门控循环单元 物理特征函数 土压平衡盾构机 盾构隧道
下载PDF
基于时序生成对抗网络的居民用户非侵入式负荷分解
15
作者 罗平 朱振宇 +3 位作者 樊星驰 孙博宇 张帆 吕强 《电力系统自动化》 EI CSCD 北大核心 2024年第2期71-81,共11页
现有的非侵入式负荷分解算法往往需要大量电器设备级的负荷数据才能保证分解精度,但由于用户对隐私性的考虑以及安装成本过高等问题,很难获取这些数据。因此,构建一种能深度挖掘电力负荷数据时序特性和电器相关性的时序生成对抗网络。... 现有的非侵入式负荷分解算法往往需要大量电器设备级的负荷数据才能保证分解精度,但由于用户对隐私性的考虑以及安装成本过高等问题,很难获取这些数据。因此,构建一种能深度挖掘电力负荷数据时序特性和电器相关性的时序生成对抗网络。利用降维网络对所有电器有功功率序列组成的高维向量进行降维以降低计算的复杂度,通过复原网络将结果还原为高维向量。基于电器运行状态和深度学习的非侵入式分解方法,运用卷积神经网络-双向门控循环单元构建状态复杂电器的负荷分解回归模型,对状态简单电器利用深度神经网络构建负荷识别分类模型。通过对比其他数据生成方法,以及改变典型公开数据集中生成数据比例所得的负荷分解结果验证了所提方法的有效性。 展开更多
关键词 非侵入式负荷分解 对抗生成网络 降维网络 卷积神经网络-双向门控循环单元 深度神经网络
下载PDF
基于双层注意力和深度自编码器的时间序列异常检测模型
16
作者 尹春勇 赵峰 《计算机工程与科学》 CSCD 北大核心 2024年第5期826-835,共10页
目前时间序列通常具有弱周期性以及高度复杂的相关性特征,传统的时间序列异常检测方法难以检测此类异常。针对这一问题,提出了一种新的无监督时间序列异常检测模型(DA-CBG-AE)。首先,使用新型滑动窗口方法,针对时间序列周期性设置滑动... 目前时间序列通常具有弱周期性以及高度复杂的相关性特征,传统的时间序列异常检测方法难以检测此类异常。针对这一问题,提出了一种新的无监督时间序列异常检测模型(DA-CBG-AE)。首先,使用新型滑动窗口方法,针对时间序列周期性设置滑动窗口大小;其次,采用卷积神经网络提取时间序列高维度空间特征;然后,提出具有堆叠式Dropout双向门循环单元网络作为自编码器的基本结构,从而捕捉时间序列的相关性特征;最后,引入双层注意力机制,进一步提取特征,选择更加关键的时间序列,从而提高异常检测准确率。为了验证该模型的有效性,将DA-CBG-AE与6种基准模型在8个数据集上进行比较。最终的实验结果表明,DA-CBG-AE获得了最优的F1值(0.863),并且其检测性能相比最新的基准模型Tad-GAN高出25.25%。 展开更多
关键词 异常检测 双层注意力机制 自编码器 卷积神经网络 双向门循环单元
下载PDF
基于片上系统的可配置卷积神经网络加速器的设计与实现
17
作者 张立国 杨红光 +1 位作者 金梅 申前 《高技术通讯》 CAS 北大核心 2024年第7期744-754,共11页
针对现阶段卷积神经网络(CNN)加速器的设计只能部署在单一现场可编程门阵列(FPGA)平台、不支持硬件平台升级迭代的问题,设计了一种基于片上系统(SoC)的可配置CNN加速器。该加速器具备以下2个特点:(1)在电路设计中将数据位宽、中间缓存... 针对现阶段卷积神经网络(CNN)加速器的设计只能部署在单一现场可编程门阵列(FPGA)平台、不支持硬件平台升级迭代的问题,设计了一种基于片上系统(SoC)的可配置CNN加速器。该加速器具备以下2个特点:(1)在电路设计中将数据位宽、中间缓存空间大小、乘法器阵列(MAC)并行度作为一种可选配置参数,通过调整资源使用量,使得该加速器能够适配不同FPGA硬件;(2)提出了动态数据复用的策略,通过对比数据传输过程中不同复用方式下的总参数量差异,动态地选择复用方法,以减少数据传输的等待时间,提高乘法器阵列利用率。该方案在ZCU104板卡上进行了实验,实验结果表明,当数据位宽选择8、乘法器阵列并行度选择1024、核心运算模块工作在180 MHz时,卷积运算阵列峰值吞吐量为180 GOPs,功耗为3.75 W,能效比达到47.97 GOPs·W^(-1),对于VGG16网络,其卷积层的平均乘法器阵列利用率达到84.37%。 展开更多
关键词 卷积神经网络(CNN) 现场可编程门阵列(FPGA) CNN加速器 可配置 异构加速
下载PDF
基于交叉注意力的多源数据融合的气体泄漏检测
18
作者 王新颖 杨阳 +2 位作者 田豪杰 陈俨 张敏 《中国安全科学学报》 CAS CSCD 北大核心 2024年第7期91-97,共7页
为解决单一传感器在管道气体泄漏检测时容易出现误报、漏报的问题,及时预警并反馈泄漏状况,提出一种基于交叉注意力的多源数据融合管道泄漏检测方法。首先,利用预训练的ShuffleNetV2模型提取热像仪数据的空间特征;然后,结合一维卷积神... 为解决单一传感器在管道气体泄漏检测时容易出现误报、漏报的问题,及时预警并反馈泄漏状况,提出一种基于交叉注意力的多源数据融合管道泄漏检测方法。首先,利用预训练的ShuffleNetV2模型提取热像仪数据的空间特征;然后,结合一维卷积神经网络(1DCNN)和双向门控循环单元(BiGRU),构建1DCNN-BiGRU模型,以提取气体传感器数据的时序特征;最后,运用交叉注意力捕获数据的时空关联性得到2个数据源的特征表示,通过残差方式进行特征连接后输入到分类层中,得到识别结果。结果表明:所构建的多源数据融合模型(SCGA)对气体识别准确率为99.22%,损失值在0~0.04内波动;与仅使用气体传感器数据的支持向量机(SVM)、1DCNN、BiGRU模型相比,准确率至少提升4.12%;与仅使用热图像传感器数据的MobileNetV3、ShuffleNetV2、ResNet18模型相比,准确率至少提升1.14%;与将时序特征和空间特征直接拼接的多源数据融合模型(SCG)相比,准确率提升1%。SCGA模型对气体识别具有较高精度。 展开更多
关键词 交叉注意力 多源数据融合 气体泄漏检测 卷积神经网络(CNN) 双向门控循环单元(BiGRU)
下载PDF
融合注意力机制的刀具磨损预测方法
19
作者 董靖川 武晓鑫 +1 位作者 高宇博 苏德鹏 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2024年第4期362-373,共12页
刀具的磨损状态影响着工件表面质量与加工稳定性,故实现其磨损量的准确监测对于保证加工可靠性、维持生产加工连续性具有积极作用.为进一步提高刀具磨损预测模型的泛化性能和准确度,提出一种融合注意力机制的多尺度卷积双向门控循环(mul... 刀具的磨损状态影响着工件表面质量与加工稳定性,故实现其磨损量的准确监测对于保证加工可靠性、维持生产加工连续性具有积极作用.为进一步提高刀具磨损预测模型的泛化性能和准确度,提出一种融合注意力机制的多尺度卷积双向门控循环(multiscale convolutional bidirectional gated recurrent unit-attention,MSCBGRU-A)神经网络的刀具磨损预测方法,其由特征拓展模块、多尺度卷积模块、双向GRU模块、注意力模块、回归模块组成.首先,将切削力、声发射、振动信号作为输入信号,输入信号通过多尺度卷积模块获得多个尺度的刀具磨损输出特征图,将多个卷积通道输出的特征图输入到连接层进行首尾和层叠两种方式的连接来获得两种输出数据.然后,将两种输出数据分别输入到双向GRU模块与注意力模块,通过双向GRU模块学习输出特征图动态变化来获取时序特征,通过注意力模块对多尺度卷积神经网络的输出进行权值分配,强化对刀具磨损预测结果贡献度更大的特征.最后,通过回归模块对磨损值进行预测.经过对比实验引入混合域注意力机制的基于卷积块的注意力机制(convolutional block attention mechanism,CBAM),获得MSCBGRU-CBAM模型,并且通过绘制CBAM的注意力权重图证明注意力机制可以自适应地关注与刀具磨损更相关的特征.与其他深度学习模型进行对比实验表明,MSCBGRU-CBAM模型具有最高的预测精度,且与未使用注意力机制的MSCBGRU模型相比,RMSE降低19.3%,MAE降低17.7%,R 2提高2.7%. 展开更多
关键词 刀具磨损预测 多尺度卷积神经网络 注意力机制 门控循环单元
下载PDF
基于CBAM-CGRU-SVM的Android恶意软件检测方法
20
作者 孙敏 成倩 丁希宁 《计算机应用》 CSCD 北大核心 2024年第5期1539-1545,共7页
随着Android恶意软件的种类和数量不断增多,检测恶意软件以保护系统安全和用户隐私变得越来越重要。针对传统的恶意软件检测模型分类准确率较低的问题,提出一种基于卷积神经网络(CNN)、门控循环单元(GRU)和支持向量机(SVM)的模型CBAM-CG... 随着Android恶意软件的种类和数量不断增多,检测恶意软件以保护系统安全和用户隐私变得越来越重要。针对传统的恶意软件检测模型分类准确率较低的问题,提出一种基于卷积神经网络(CNN)、门控循环单元(GRU)和支持向量机(SVM)的模型CBAM-CGRU-SVM。首先,在CNN中添加卷积块注意力模块(CBAM)以学习更多恶意软件的关键特征;其次,利用GRU进一步提取特征;最后,为了解决图像分类时模型泛化能力不足的问题,使用SVM代替softmax激活函数作为模型的分类函数。实验使用了Malimg公开数据集,该数据集将恶意软件数据图像化作为模型输入。实验结果表明,CBAM-CGRU-SVM模型分类准确率达到94.73%,能够更有效地对恶意软件家族进行分类。 展开更多
关键词 恶意软件 卷积神经网络 卷积块注意力模块 门控循环单元 支持向量机
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部