期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于动态图注意力的风电场组合预测模型
1
作者
廖雪超
程轶群
《软件导刊》
2024年第2期9-16,共8页
为了实现风电场用能管理的高效调度,充分提取多站点间时空特征的潜在联系,提出一种基于动态图卷积和图注意力的多站点短期风电功率时空组合预测模型。使用图卷积实现多站点间时序特征的邻居聚合,并使用图注意力机制加强其对空间特征的...
为了实现风电场用能管理的高效调度,充分提取多站点间时空特征的潜在联系,提出一种基于动态图卷积和图注意力的多站点短期风电功率时空组合预测模型。使用图卷积实现多站点间时序特征的邻居聚合,并使用图注意力机制加强其对空间特征的提取能力。同时,针对传统模型无法处理图节点关联性实时变化的问题,先在图卷积过程中依据站点间的相关系数和距离动态构建邻接矩阵,再使用门控循环单元处理动态图卷积输出的上下文信息,最后完成风电功率预测。实验结果表明,所提出的组合模型在预测精度、稳定性和多步预测性能方面均最优。
展开更多
关键词
短期风电预测
动态相关性
图卷积神经网络
注意力机制
门控循环单元
下载PDF
职称材料
DistillBIGRU:基于知识蒸馏的文本分类模型
被引量:
2
2
作者
黄友文
魏国庆
胡燕芳
《中文信息学报》
CSCD
北大核心
2022年第4期81-89,共9页
文本分类模型可分为预训练语言模型和非预训练语言模型,预训练语言模型的分类效果较好,但模型包含的参数量庞大,对硬件算力的要求较高,限制了其在许多下游任务中的使用。非预训练语言模型结构相对简单,推算速度快,对部署环境的要求低,...
文本分类模型可分为预训练语言模型和非预训练语言模型,预训练语言模型的分类效果较好,但模型包含的参数量庞大,对硬件算力的要求较高,限制了其在许多下游任务中的使用。非预训练语言模型结构相对简单,推算速度快,对部署环境的要求低,但效果较差。针对以上问题,该文提出了基于知识蒸馏的文本分类模型DistillBIGRU,构建MPNetGCN模型作为教师模型,选择双向门控循环单元网络作为学生模型,通过知识蒸馏得到最终模型DistillBIGRU。在多个数据集上教师模型MPNetGCN的平均分类准确率相比BERTGCN提高了1.3%,DistillBIGRU模型在参数量约为BERT-Base模型1/9的条件下,达到了与BERT-Base模型相当的文本分类效果。
展开更多
关键词
文本分类
知识蒸馏
双向门控循环单元
下载PDF
职称材料
题名
基于动态图注意力的风电场组合预测模型
1
作者
廖雪超
程轶群
机构
武汉科技大学计算机科学与技术学院
智能信息处理与实时工业系统重点实验室
出处
《软件导刊》
2024年第2期9-16,共8页
基金
国家自然科学基金项目(62273264)。
文摘
为了实现风电场用能管理的高效调度,充分提取多站点间时空特征的潜在联系,提出一种基于动态图卷积和图注意力的多站点短期风电功率时空组合预测模型。使用图卷积实现多站点间时序特征的邻居聚合,并使用图注意力机制加强其对空间特征的提取能力。同时,针对传统模型无法处理图节点关联性实时变化的问题,先在图卷积过程中依据站点间的相关系数和距离动态构建邻接矩阵,再使用门控循环单元处理动态图卷积输出的上下文信息,最后完成风电功率预测。实验结果表明,所提出的组合模型在预测精度、稳定性和多步预测性能方面均最优。
关键词
短期风电预测
动态相关性
图卷积神经网络
注意力机制
门控循环单元
Keywords
short-term wind power forecast
dynamic correlation
graph convolution neural network
attentional mechanism
gated recur⁃rent unit
分类号
TP130 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
DistillBIGRU:基于知识蒸馏的文本分类模型
被引量:
2
2
作者
黄友文
魏国庆
胡燕芳
机构
江西理工大学信息工程学院
出处
《中文信息学报》
CSCD
北大核心
2022年第4期81-89,共9页
基金
江西省教育厅科学技术研究项目(GJJ180443)。
文摘
文本分类模型可分为预训练语言模型和非预训练语言模型,预训练语言模型的分类效果较好,但模型包含的参数量庞大,对硬件算力的要求较高,限制了其在许多下游任务中的使用。非预训练语言模型结构相对简单,推算速度快,对部署环境的要求低,但效果较差。针对以上问题,该文提出了基于知识蒸馏的文本分类模型DistillBIGRU,构建MPNetGCN模型作为教师模型,选择双向门控循环单元网络作为学生模型,通过知识蒸馏得到最终模型DistillBIGRU。在多个数据集上教师模型MPNetGCN的平均分类准确率相比BERTGCN提高了1.3%,DistillBIGRU模型在参数量约为BERT-Base模型1/9的条件下,达到了与BERT-Base模型相当的文本分类效果。
关键词
文本分类
知识蒸馏
双向门控循环单元
Keywords
text classification
knowledge distillation
bidectional
gated
recur
ent
unit
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于动态图注意力的风电场组合预测模型
廖雪超
程轶群
《软件导刊》
2024
0
下载PDF
职称材料
2
DistillBIGRU:基于知识蒸馏的文本分类模型
黄友文
魏国庆
胡燕芳
《中文信息学报》
CSCD
北大核心
2022
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部