Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to spe...Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to specific data ranges with an average absolute percentage relative error(AAPRE)of more than 10%.The published gated recurrent unit(GRU)models do not consider trend analysis to show physical behaviors.In this study,we aim to develop a GRU model using trend analysis and three inputs for predicting n s based on a broad range of data,n s(value of 0.1627-0.4492),bulk formation density(RHOB)(0.315-2.994 g/mL),compressional time(DTc)(44.43-186.9 μs/ft),and shear time(DTs)(72.9-341.2μ s/ft).The GRU model was evaluated using different approaches,including statistical error an-alyses.The GRU model showed the proper trends,and the model data ranges were wider than previous ones.The GRU model has the largest correlation coefficient(R)of 0.967 and the lowest AAPRE,average percent relative error(APRE),root mean square error(RMSE),and standard deviation(SD)of 3.228%,1.054%,4.389,and 0.013,respectively,compared to other models.The GRU model has a high accuracy for the different datasets:training,validation,testing,and the whole datasets with R and AAPRE values were 0.981 and 2.601%,0.966 and 3.274%,0.967 and 3.228%,and 0.977 and 2.861%,respectively.The group error analyses of all inputs show that the GRU model has less than 5% AAPRE for all input ranges,which is superior to other models that have different AAPRE values of more than 10% at various ranges of inputs.展开更多
Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties ...Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties in dealing with high dimensional time series target data, a threat assessment method based on self-attention mechanism and gated recurrent unit(SAGRU) is proposed. Firstly, a threat feature system including air combat situations and capability features is established. Moreover, a data augmentation process based on fractional Fourier transform(FRFT) is applied to extract more valuable information from time series situation features. Furthermore, aiming to capture key characteristics of battlefield evolution, a bidirectional GRU and SA mechanisms are designed for enhanced features.Subsequently, after the concatenation of the processed air combat situation and capability features, the target threat level will be predicted by fully connected neural layers and the softmax classifier. Finally, in order to validate this model, an air combat dataset generated by a combat simulation system is introduced for model training and testing. The comparison experiments show the proposed model has structural rationality and can perform threat assessment faster and more accurately than the other existing models based on deep learning.展开更多
This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart ...This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems.展开更多
水质指标具有多元相关性、时序性和非线性的特点,为有效预测河流水质变化,针对水质数据存在缺失和异常的问题,提出基于灰色关联分析-门控循环单元(Grey Relational Analysis-Gated Recurrent Unit, GRA-GRU)的水质预测模型。以淮河流域...水质指标具有多元相关性、时序性和非线性的特点,为有效预测河流水质变化,针对水质数据存在缺失和异常的问题,提出基于灰色关联分析-门控循环单元(Grey Relational Analysis-Gated Recurrent Unit, GRA-GRU)的水质预测模型。以淮河流域水质数据为样本,使用线性插值修补缺失数据和剔除的异常数据。使用灰色关联分析计算不同水质指标间的相关性,选择高相关性的水质指标以确定输入变量,并使用门控循环单元(Gated Recurrent Unit, GRU)预测不同的水质指标。将GRA-GRU的预测结果与反向传播神经网络(Back Propagation Neural Network, BPNN)、循环神经网络(Recurrent Neural Network, RNN)、长短期记忆神经网络(Long Short Term Memory, LSTM)、GRU及灰色关联分析-长短期记忆神经网络(Grey Relational Analysis-Long Short Term Memory, GRA-LSTM)进行对比分析,结果显示GRA-GRU在不同水质指标预测上具有较好的适应性,可以有效降低预测误差。其中,与其他模型相比,GRA-GRU预测的化学需氧量在均方根误差上分别降低了3.617%、0.681%、0.478%、1.505%和0.471%。展开更多
随着“双碳”目标的推进,清洁能源所占比重大幅度增加,分布式光伏发电在我国农村地区快速发展,但其随机性、间歇性的特点给新能源消纳和电网稳定带来很大的挑战。光伏发电预测可以在一定程度上改善新能源消纳问题,减少光伏发电的不稳定...随着“双碳”目标的推进,清洁能源所占比重大幅度增加,分布式光伏发电在我国农村地区快速发展,但其随机性、间歇性的特点给新能源消纳和电网稳定带来很大的挑战。光伏发电预测可以在一定程度上改善新能源消纳问题,减少光伏发电的不稳定性对电网的冲击。因此,为提高光伏发电功率预测精度,提出一种基于改进向量加权平均算法优化CNN-QRGRU网络的光伏发电概率预测方法。首先采用ReliefF算法对特征变量进行选择,在此基础上利用高斯混合模型(Gaussian mixture model,GMM)聚类方法将天气分为晴天、晴转多云和阴雨天3种类型,将处理好的数据输入到CNN-GRU模型中,并利用向量加权平均(weighted mean of vectors algorithm,INFO)优化算法对模型超参数进行调参,将分位数回归模型(quantile regression,QR)与INFO-CNN-GRU模型相结合得到光伏功率条件分布,结合核密度估计法从条件分布中获得概率密度函数,完成概率预测。以实际光伏电站数据作为基础,将提出的INFO优化算法与其他几种传统的优化算法进行对比,结果表明INFO的优化效果更好,在此基础上进行概率预测,得到的概率预测结果相较于点预测能提供更多有效信息,更具有应用价值。展开更多
基金The authors thank the Yayasan Universiti Teknologi PETRONAS(YUTP FRG Grant No.015LC0-428)at Universiti Teknologi PETRO-NAS for supporting this study.
文摘Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to specific data ranges with an average absolute percentage relative error(AAPRE)of more than 10%.The published gated recurrent unit(GRU)models do not consider trend analysis to show physical behaviors.In this study,we aim to develop a GRU model using trend analysis and three inputs for predicting n s based on a broad range of data,n s(value of 0.1627-0.4492),bulk formation density(RHOB)(0.315-2.994 g/mL),compressional time(DTc)(44.43-186.9 μs/ft),and shear time(DTs)(72.9-341.2μ s/ft).The GRU model was evaluated using different approaches,including statistical error an-alyses.The GRU model showed the proper trends,and the model data ranges were wider than previous ones.The GRU model has the largest correlation coefficient(R)of 0.967 and the lowest AAPRE,average percent relative error(APRE),root mean square error(RMSE),and standard deviation(SD)of 3.228%,1.054%,4.389,and 0.013,respectively,compared to other models.The GRU model has a high accuracy for the different datasets:training,validation,testing,and the whole datasets with R and AAPRE values were 0.981 and 2.601%,0.966 and 3.274%,0.967 and 3.228%,and 0.977 and 2.861%,respectively.The group error analyses of all inputs show that the GRU model has less than 5% AAPRE for all input ranges,which is superior to other models that have different AAPRE values of more than 10% at various ranges of inputs.
基金supported by the National Natural Science Foundation of China (6202201562088101)+1 种基金Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100)Shanghai Municip al Commission of Science and Technology Project (19511132101)。
文摘Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties in dealing with high dimensional time series target data, a threat assessment method based on self-attention mechanism and gated recurrent unit(SAGRU) is proposed. Firstly, a threat feature system including air combat situations and capability features is established. Moreover, a data augmentation process based on fractional Fourier transform(FRFT) is applied to extract more valuable information from time series situation features. Furthermore, aiming to capture key characteristics of battlefield evolution, a bidirectional GRU and SA mechanisms are designed for enhanced features.Subsequently, after the concatenation of the processed air combat situation and capability features, the target threat level will be predicted by fully connected neural layers and the softmax classifier. Finally, in order to validate this model, an air combat dataset generated by a combat simulation system is introduced for model training and testing. The comparison experiments show the proposed model has structural rationality and can perform threat assessment faster and more accurately than the other existing models based on deep learning.
基金support from the National Science and Technology Council of Taiwan(Contract Nos.111-2221 E-011081 and 111-2622-E-011019)the support from Intelligent Manufacturing Innovation Center(IMIC),National Taiwan University of Science and Technology(NTUST),Taipei,Taiwan,which is a Featured Areas Research Center in Higher Education Sprout Project of Ministry of Education(MOE),Taiwan(since 2023)was appreciatedWe also thank Wang Jhan Yang Charitable Trust Fund(Contract No.WJY 2020-HR-01)for its financial support.
文摘This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems.
文摘水质指标具有多元相关性、时序性和非线性的特点,为有效预测河流水质变化,针对水质数据存在缺失和异常的问题,提出基于灰色关联分析-门控循环单元(Grey Relational Analysis-Gated Recurrent Unit, GRA-GRU)的水质预测模型。以淮河流域水质数据为样本,使用线性插值修补缺失数据和剔除的异常数据。使用灰色关联分析计算不同水质指标间的相关性,选择高相关性的水质指标以确定输入变量,并使用门控循环单元(Gated Recurrent Unit, GRU)预测不同的水质指标。将GRA-GRU的预测结果与反向传播神经网络(Back Propagation Neural Network, BPNN)、循环神经网络(Recurrent Neural Network, RNN)、长短期记忆神经网络(Long Short Term Memory, LSTM)、GRU及灰色关联分析-长短期记忆神经网络(Grey Relational Analysis-Long Short Term Memory, GRA-LSTM)进行对比分析,结果显示GRA-GRU在不同水质指标预测上具有较好的适应性,可以有效降低预测误差。其中,与其他模型相比,GRA-GRU预测的化学需氧量在均方根误差上分别降低了3.617%、0.681%、0.478%、1.505%和0.471%。
文摘随着“双碳”目标的推进,清洁能源所占比重大幅度增加,分布式光伏发电在我国农村地区快速发展,但其随机性、间歇性的特点给新能源消纳和电网稳定带来很大的挑战。光伏发电预测可以在一定程度上改善新能源消纳问题,减少光伏发电的不稳定性对电网的冲击。因此,为提高光伏发电功率预测精度,提出一种基于改进向量加权平均算法优化CNN-QRGRU网络的光伏发电概率预测方法。首先采用ReliefF算法对特征变量进行选择,在此基础上利用高斯混合模型(Gaussian mixture model,GMM)聚类方法将天气分为晴天、晴转多云和阴雨天3种类型,将处理好的数据输入到CNN-GRU模型中,并利用向量加权平均(weighted mean of vectors algorithm,INFO)优化算法对模型超参数进行调参,将分位数回归模型(quantile regression,QR)与INFO-CNN-GRU模型相结合得到光伏功率条件分布,结合核密度估计法从条件分布中获得概率密度函数,完成概率预测。以实际光伏电站数据作为基础,将提出的INFO优化算法与其他几种传统的优化算法进行对比,结果表明INFO的优化效果更好,在此基础上进行概率预测,得到的概率预测结果相较于点预测能提供更多有效信息,更具有应用价值。