Harsh working environments and wear between blades and other unit components can easily lead to cracks and damage on wind turbine blades.The cracks on the blades can endanger the shafting of the generator set,the towe...Harsh working environments and wear between blades and other unit components can easily lead to cracks and damage on wind turbine blades.The cracks on the blades can endanger the shafting of the generator set,the tower and other components,and even cause the tower to collapse.To achieve high-precision wind blade crack detection,this paper proposes a crack fault-detection strategy that integratesGated ResidualNetwork(GRN),a fusionmodule and Transformer.Firstly,GRNcan reduce unnecessary noisy inputs that could negatively impact performancewhile preserving the integrity of feature information.In addition,to gain in-depth information about the characteristics of wind turbine blades,a fusionmodule is suggested to implement the information fusion of wind turbine features.Specifically,each fan feature ismapped to a one-dimensional vector with the same length,and all one-dimensional vectors are concatenated to obtain a two-dimensional vector.And then,in the fusion module,the information fusion of the same characteristic variables in the different channels is realized through the Channel-mixing MLP,and the information fusion of different characteristic variables in the same channel is realized through the ColumnmixingMLP.Finally,the fused feature vector is input into the Transformer for feature learning,which enhances the influence of important feature information and improves the model’s anti-noise ability and classification accuracy.Extensive experimentswere conducted on the wind turbine supervisory control and data acquisition(SCADA)data froma domesticwind field.The results show that compared with other state-of-the-artmodels,including XGBoost,LightGBM,TabNet,etc.,the F1-score of proposed gated fusion based Transformer model can reach 0.9907,which is 0.4%-2.09% higher than the comparedmodels.Thismethod provides amore reliable approach for the condition detection and maintenance of fan blades in wind farms.展开更多
基金supported by the Jiangsu Provincial Key R&D Programme(BE2020034)China Huaneng Group Science and Technology Project(HNKJ20-H72).
文摘Harsh working environments and wear between blades and other unit components can easily lead to cracks and damage on wind turbine blades.The cracks on the blades can endanger the shafting of the generator set,the tower and other components,and even cause the tower to collapse.To achieve high-precision wind blade crack detection,this paper proposes a crack fault-detection strategy that integratesGated ResidualNetwork(GRN),a fusionmodule and Transformer.Firstly,GRNcan reduce unnecessary noisy inputs that could negatively impact performancewhile preserving the integrity of feature information.In addition,to gain in-depth information about the characteristics of wind turbine blades,a fusionmodule is suggested to implement the information fusion of wind turbine features.Specifically,each fan feature ismapped to a one-dimensional vector with the same length,and all one-dimensional vectors are concatenated to obtain a two-dimensional vector.And then,in the fusion module,the information fusion of the same characteristic variables in the different channels is realized through the Channel-mixing MLP,and the information fusion of different characteristic variables in the same channel is realized through the ColumnmixingMLP.Finally,the fused feature vector is input into the Transformer for feature learning,which enhances the influence of important feature information and improves the model’s anti-noise ability and classification accuracy.Extensive experimentswere conducted on the wind turbine supervisory control and data acquisition(SCADA)data froma domesticwind field.The results show that compared with other state-of-the-artmodels,including XGBoost,LightGBM,TabNet,etc.,the F1-score of proposed gated fusion based Transformer model can reach 0.9907,which is 0.4%-2.09% higher than the comparedmodels.Thismethod provides amore reliable approach for the condition detection and maintenance of fan blades in wind farms.