In this paper, spinor and vector decompositions of SU(2) gauge potential are presented and their equivalence is constructed using a simply proposal. We also obtain the action of Faddeev nonlinear 0(3) sigma model ...In this paper, spinor and vector decompositions of SU(2) gauge potential are presented and their equivalence is constructed using a simply proposal. We also obtain the action of Faddeev nonlinear 0(3) sigma model from the SU(2) mass/ve gauge field theory, which is proposed according to the gauge invariant principle. At last, the knot structure in SU(2) Chern-Simons filed theory is discussed in terms of the Φ-mapping topological current theory, The topological charge of the knot is characterized by the Hopf indices and the Brouwer degrees of Φ-mapping.展开更多
Based on the decomposition theory of the U(1) gauge potential, the inner structure of the statistical gauge potential in the Chern-Simons-Ginzburg-Landau (CSGL) theory is studied. We give a new creation mechanism ...Based on the decomposition theory of the U(1) gauge potential, the inner structure of the statistical gauge potential in the Chern-Simons-Ginzburg-Landau (CSGL) theory is studied. We give a new creation mechanism of the statistical gauge potential, Furthermore, making use of the b-mapping topological current theory, we obtain the precise topological expression of the statistical magnetic field, which takes the topological information of the vortices.展开更多
基金*The project supported by National Natural Science Foundation of China and the Doctoral Foundation of the Ministry of Education of China
文摘In this paper, spinor and vector decompositions of SU(2) gauge potential are presented and their equivalence is constructed using a simply proposal. We also obtain the action of Faddeev nonlinear 0(3) sigma model from the SU(2) mass/ve gauge field theory, which is proposed according to the gauge invariant principle. At last, the knot structure in SU(2) Chern-Simons filed theory is discussed in terms of the Φ-mapping topological current theory, The topological charge of the knot is characterized by the Hopf indices and the Brouwer degrees of Φ-mapping.
文摘Based on the decomposition theory of the U(1) gauge potential, the inner structure of the statistical gauge potential in the Chern-Simons-Ginzburg-Landau (CSGL) theory is studied. We give a new creation mechanism of the statistical gauge potential, Furthermore, making use of the b-mapping topological current theory, we obtain the precise topological expression of the statistical magnetic field, which takes the topological information of the vortices.