In this study,we estimate the absolute vertical land motions at three tidal stations with collocated Global Navigation Satellite System(GNSS)receivers over French Polynesia during the period 2007-2020,and obtain,as an...In this study,we estimate the absolute vertical land motions at three tidal stations with collocated Global Navigation Satellite System(GNSS)receivers over French Polynesia during the period 2007-2020,and obtain,as ancillary results,estimates of the absolute changes in sea level at the same locations.To verify our processing approach to determining vertical motion,we first modeled vertical motion at the International GNSS Service(IGS)THTI station located in the capital island of Tahiti and compared our estimate with previous independent determinations,with a good agreement.We obtained the following estimates for the vertical land motions at the tide gauges:Tubuai island,Austral Archipelago-0.92±0.17 mm/yr,Vairao village,Tahiti Iti:-0.49±0.39 mm/yr,Rikitea,Gambier Archipelago-0.43±0.17 mm/yr.The absolute variations of the sea level are:Tubuai island,Austral Archipelago 5.25±0.60 mm/yr,Vairao village,Tahiti Iti:3.62±0.52 mm/yr,Rikitea,Gambier Archipelago 1.52±0.23 mm/yr.We discuss these absolute values in light of the values obtained from altimetric measurements and other means in French Polynesia.展开更多
Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/appro...Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/approach-Finite element method was employed to analyze the stress and strain distribution on the track wheel web surface under varying wheel-rail forces.Locations with minimal coupling interference between vertical and lateral forces were identified as suitable for strain gauge installation.Findings-The results show that due to the track wheel web’s unique curved shape and wheel-rail force loading mechanism,both tensile and compressive states exit on the surface of the web.When vertical force is applied,Mises stress and strain are relatively high near the inner radius of 710 mm and the outer radius of 1110mmof the web.Under lateral force,high Mises stress and strain are observed near the radius of 670mmon the inner and outer sides of the web.As the wheel-rail force application point shifts laterally toward the outer side,the Mises stress and strain near the inner radius of 710 mm of the web gradually decrease under vertical force while gradually increasing near the outer radius of 1110 mm of the web.Under lateral force,the Mises stress and strain on the surface of the web remain relatively unchanged regardless of the wheel-rail force application point.Based on the analysis of stress and strain on the surface of the web under different wheel-rail forces,the inner radius of 870 mm is recommended as the optimal mounting location of strain gauges for measuring vertical force,while the inner radius of 1143 mm is suitable for measuring lateral force.Originality/value-The research findings provide valuable insights for determining optimal strain gauge locations and designing an effective track wheel force measurement system.展开更多
We propose the new field potential by maintaining both the symmetry of the scalar gauge and the conservation law keeping N?ether’s theorem, while disregarding the symmetry of the vector gauge. The new potential forms...We propose the new field potential by maintaining both the symmetry of the scalar gauge and the conservation law keeping N?ether’s theorem, while disregarding the symmetry of the vector gauge. The new potential forms like the well-type potential where a particle behaves almost freely but is very hard to escape without external energy, which can be interpreted as local confinement and asymptotic freedom. By assuming a 2-dimensional metric tensor in 4-dimensional space-time, we suggest the existence of 3 kinds of particles that resemble QCD with 3 color charges. We also show that the mass term exists but comes to zero and derive the charge and spin values. We can regard the particle with this new potential as a gluon, and the interaction in this well-type potential as a strong interaction for the properties of mass, charge, spin, and its behavior. We suggest the eight-fold way with this new particle, which is similar to the existing method based on SU (3) symmetry. Even though the strong interaction has been analyzed in the standard model and string theory, we build a new consistent model based on the theory of relativity including Riemann geometry, and show the unification of gravitational and strong interactional field.展开更多
Using the Landau and symmetric gauges for the vector potential of a constant magnetic field and the quantum problem of a charged particle moving on a flat surface, we show the classical electromagnetic gauge transform...Using the Landau and symmetric gauges for the vector potential of a constant magnetic field and the quantum problem of a charged particle moving on a flat surface, we show the classical electromagnetic gauge transformation does not correspond to a one-dimensional unitary group transformation U(1) of the wave function for the quantum case. In addition, with the re-examination of the relation between the magnetic field B and its vector potential A, we found that, in order to have a consistent formulation of the dynamics of the charged particle with both expressions, we must have that B=∇×A if and only if B≠0.展开更多
This study investigated the influence of band microstructure induced by centerline segregation on carbide precipitation behavior and toughness in an 80 mm-thick 1 GPa low-carbon low-alloy steel plate.The quarter-thick...This study investigated the influence of band microstructure induced by centerline segregation on carbide precipitation behavior and toughness in an 80 mm-thick 1 GPa low-carbon low-alloy steel plate.The quarter-thickness(1/4t)and half-thickness(1/2t)regions of the plate exhibited similar ductility and toughness after quenching.After tempering,the 1/4t region exhibited~50%and~25%enhancements in both the total elongation and low-temperature toughness at-40°C,respectively,without a decrease in yield strength,whereas the toughness of the 1/2t region decreased by~46%.After quenching,both the 1/4t and 1/2t regions exhibited lower bainite and lath martensite concentrations,but only the 1/2t region exhibited microstructure bands.Moreover,the tempered 1/4t region featured uniformly dispersed short rod-like M_(23)C_(6)carbides,and spherical MC precipitates with diameters of~20–100 nm and<20 nm,respectively.The uniformly dispersed nanosized M_(23)C_(6)carbides and MC precipitates contributed to the balance of high strength and high toughness.The band microstructure of the tempered 1/2t region featured a high density of large needle-like M3C carbides.The length and width of the large M3C carbides were~200–500 nm and~20–50 nm,respectively.Fractography analysis revealed that the high density of large carbides led to delamination cleavage fracture,which significantly deteriorated toughness.展开更多
Since 2008 a network of five sea-level monitoring stations was progressively installed in French Polynesia.The stations are autonomous and data,collected at a sampling rate of 1 or 2 min,are not only recorded locally,...Since 2008 a network of five sea-level monitoring stations was progressively installed in French Polynesia.The stations are autonomous and data,collected at a sampling rate of 1 or 2 min,are not only recorded locally,but also transferred in real time by a radio-link to the NOAA through the GOES satellite.The new ET34-ANA-V80 version of ETERNA,initially developed for Earth Tides analysis,is now able to analyze ocean tides records.Through a two-step validation scheme,we took advantage of the flexibility of this new version,operated in conjunction with the preprocessing facilities of the Tsoft software,to recover co rrected data series able to model sea-level variations after elimination of the ocean tides signal.We performed the tidal analysis of the tide gauge data with the highest possible selectivity(optimal wave grouping)and a maximum of additional terms(shallow water constituents).Our goal was to provide corrected data series and modelled ocean tides signal to compute tide-free sea-level variations as well as tidal prediction models with centimeter precision.We also present in this study the characteristics of the ocean tides in French Polynesia and preliminary results concerning the non-tidal variations of the sea level concerning the tide gauge setting.展开更多
As an important part of water level warning in water conservancy projects,often due to the influence of environmental factors such as light and stains,the acquired water gauge images have sticky,broken and bright spot...As an important part of water level warning in water conservancy projects,often due to the influence of environmental factors such as light and stains,the acquired water gauge images have sticky,broken and bright spot conditions,which affect the identification of water gauges.To solve this problem,a water gauge image denoising model based on improved adaptive total variation is proposed.Firstly,the regular term exponent in the adaptive total variational equation is changed to an inverse cosine function;secondly,the differential curvature is used to distinguish the image noise points and increase the smoothing strength at the noise points;finally,according to the characteristics of the gradient mode and adaptive gradient threshold after Gaussian filtering,the New model can adaptively denoise in the smooth area and protect the edge area,so as to have the characteristics of both edge-preserving denoising.The experimental results show that the new model has a great improvement in image vision,higher iteration efficiency and an average increase of 1.6 dB in peak signal-to-noise ratio,and an average increase of 9%in structural similarity,which is more beneficial to practical applications.展开更多
Dear Editor,The advent of 23-gauge(G),25-G,and 27-G vitrectomy systems[1]since the beginning of the 21stcentury has allowed vitrectomy via a smaller incision compared to the 20-G system;hence the name"microincisi...Dear Editor,The advent of 23-gauge(G),25-G,and 27-G vitrectomy systems[1]since the beginning of the 21stcentury has allowed vitrectomy via a smaller incision compared to the 20-G system;hence the name"microincision vitrectomy surgery".Microincision vitrectomy surgery has gainedpopularity among vitreoretinal surgeons.展开更多
This paper attempts to propose a grand unified guiding principle of gauge fields from the mathematical and physical picture of fiber bundles: it is believed that our universe may have more fundamental interactions tha...This paper attempts to propose a grand unified guiding principle of gauge fields from the mathematical and physical picture of fiber bundles: it is believed that our universe may have more fundamental interactions than the four fundamental interactions, and the gauge fields of these fundamental interactions are just a unified gauge potential on the fiber bundle manifold or the components connected to the bottom manifold, that is, our universe;these components can meet the transformation of gauge potential, and even can be transformed from a fundamental interaction gauge potential to another fundamental interaction gauge potential, and can be summarized into a unified equation, namely the expression of the generalized gauge equation, corresponding to the gauge transformation invariance;so gauge transformation invariance is a necessary condition to unify field theory, but quantization of field is not a necessary condition;the four (or more) fundamental interaction fields of the universe are unified into a universal gauge field defined by the connection of the principal fiber bundle on the cosmic base manifold.展开更多
Tanzania is one of the countries in Africa that has engaged in the projects for construction of the electrified Standard Gauge Railway (SGR). However, lack of integration of transportation and land-use planning threat...Tanzania is one of the countries in Africa that has engaged in the projects for construction of the electrified Standard Gauge Railway (SGR). However, lack of integration of transportation and land-use planning threatens economic sustainability of the SGR project. This study was carried out for the purpose of finding-out how transportation can be integrated with land-use planning for economic sustainability of the project. The study was carried-out by using qualitative research approach through demonstration as case study. Findings show that construction of the SGR is not integrated with land-use planning around the stations and along the SGR corridor. It is concluded that economic sustainability of the SGR projects can be achieved by integration of transport and land-use planning. As demonstrated, it is recommended to deliberate for integration of transportation and land-use planning in the SGR projects of which the prime land within Transit Stations can be efficiently used by using Transit Oriented Development and secure more land for production activities around the Transit Stations and along the SGR corridor.展开更多
The author of this paper has put forward a unified program of gauge field from the mathematical and physical picture of the principal associated bundles: thinking that our universe may have more fundamental interactio...The author of this paper has put forward a unified program of gauge field from the mathematical and physical picture of the principal associated bundles: thinking that our universe may have more fundamental interactions than the four fundamental interactions, and these basic interaction gauge fields are only the projection components to the base manifold, that is our universe, from a unified gauge potential or connection of the principal associated bundle manifold on the base manifold. These components can satisfy the transformation of gauge potential, and can even be transformed from one basic interaction gauge potential to another basic interaction gauge potential, and can be summarized into a unified equation, that is, the generalized gauge Equation (GGE), but the gauge potential or connection on the principal bundle is invariant, corresponding to the invariance of gauge transformation [1]. In this paper, we will continue to discuss this aspect concretely, and specifically construct a spatiotemporal model with the frame bundle as the principal bundle, and the tensor bundle as the associated bundle, so that the four fundamental interactions, especially the electromagnetic interaction and the gravitational interaction, can be reflected in the bottom manifold, that is, the regional distributions in our universe. Furthermore, this paper studies the existence of gauge transformation across basic interactions by establishing a model of gauge transformation of basic interaction field;it is found that the unified expression formula is GGE and the expression relation on the curvature of space-time. Therefore, the author discusses the feasibility of the generalized gauge transformation across the basic electromagnetic interaction and the basic gravitational interaction, and on this basis, specifically determines a method or way to find the generalized gauge transformation, so as to try to realize the last step of the “unification” of the four fundamental interactions in physics, that is, the “unification” of electromagnetism and gravity.展开更多
Financing of the African Integrated High-Speed Railway Network (AIHSRN) through Standard Gauge Railway (SGR) Projects is very expensive. As a result, most of the African countries seek financial supports from the Inte...Financing of the African Integrated High-Speed Railway Network (AIHSRN) through Standard Gauge Railway (SGR) Projects is very expensive. As a result, most of the African countries seek financial supports from the International Financial Institutions (IFIs). However, conditions provided by the IFIs through the Performance Standards (PS) of the International Financial Corporation (IFC) increase cost of the projects and thus, it becomes a burden to most of the African countries. This study aimed to explore the causes of IFC-PS through the SGR Projects that escalate costs and how to address them. The Tanzania SGR Lot 1 Project that covered 205 km from Dar es Salaam to Morogoro was selected as a case study. The methods used for data collection involved literature review, focus group discussions and interviews. The results and findings show a gap between the IFC-PS and the National Laws and Regulations that escalates costs of the projects if funds from the IFIs were to be secured. To bridge the gap, it is recommended that the African countries should engage into negotiations with the IFIs to agree to waive IFC-PS conditions that escalate costs provided they are adequately covered in the national laws and regulations;engagement of locally established national and regional financial institutions;and the responsible government institutions in the African countries should sit together for assessment and review of the IFC-PS against the national laws and regulations.展开更多
Uniaxial strain is a powerful tuning parameter that can control symmetry and anisotropic electronic properties in iron-based superconductors.However,accurately characterizing anisotropic strain can be challenging and ...Uniaxial strain is a powerful tuning parameter that can control symmetry and anisotropic electronic properties in iron-based superconductors.However,accurately characterizing anisotropic strain can be challenging and complex.Here,we utilize a cryogenic optical system equipped with a high-spatial-resolution microscope to characterize surface strains in iron-based superconductors using the digital image correlation method.Compared with other methods such as high-resolution x-ray diffraction,strain gauge,and capacitive sensor,digital image correlation offers a non-contact full-field measurement approach,acting as an optical virtual strain gauge that provides high spatial resolution.The results measured on detwinned BaFe_(2)As_(2)are quantitatively consistent with the distortion measured by x-ray diffraction and neutron Larmor diffraction.These findings highlight the potential of cryogenic digital image correlation as an effective and accessible tool for probing the isotropic and anisotropic strains,facilitating applications of uniaxial strain tuning in research of quantum materials.展开更多
As the eventful year of 2023 drew to a close,China’s decisive economic rebound over the preceding 11 months continued to propel steady recovery of the flagging global economy.Last November,China’s retail sales of co...As the eventful year of 2023 drew to a close,China’s decisive economic rebound over the preceding 11 months continued to propel steady recovery of the flagging global economy.Last November,China’s retail sales of consumer goods-a major gauge of consumption strength-maintained accelerated growth,evident in a registered year-on-year increase of 10.1 percent,according to National Bureau of Statistics(NBS)data published on December 15.During the January-November period,moreover,total retail sales of the country’s consumer goods swelled to RMB 42.79 trillion-a 7.2 percent increase over the previous year.展开更多
This paper presents a new theory of gravity, called here Ashtekar-Kodama (AK) gravity, which is based on the Ashtekar-Kodama formulation of loop quantum gravity (LQG), yields in the limit the Einstein equations, and i...This paper presents a new theory of gravity, called here Ashtekar-Kodama (AK) gravity, which is based on the Ashtekar-Kodama formulation of loop quantum gravity (LQG), yields in the limit the Einstein equations, and in the quantum regime a full renormalizable quantum gauge field theory. The three fundamental constraints (hamiltonian, gaussian and diffeomorphism) were formulated in 3-dimensional spatial form within LQG in Ashtekar formulation using the notion of the Kodama state with positive cosmological constant Λ. We introduce a 4-dimensional covariant version of the 3-dimensional (spatial) hamiltonian, gaussian and diffeomorphism constraints of LQG. We obtain 32 partial differential equations for the 16 variables E<sub>mn</sub> (E-tensor, inverse densitized tetrad of the metric) and 16 variables A<sub>mn</sub> (A-tensor, gravitational wave tensor). We impose the boundary condition: for large distance the E-generated metric g(E) becomes the GR-metric g (normally Schwarzschild-spacetime). The theory based on these Ashtekar-Kodama (AK) equations, and called in the following Ashtekar-Kodama (AK-) gravity has the following properties. • For Λ = 0 the AK equations become Einstein equations, A-tensor is trivial (constant), and the E-generated metric g(E) is identical with the GR-metric g. • When the AK-equations are developed into a Λ-power series, the Λ-term yields a gravitational wave equation, which has only at least quadrupole wave solutions and becomes in the limit of large distance r the (normal electromagnetic) wave equation. • AK-gravity, as opposed to GR, has no singularity at the horizon: the singularity in the metric becomes a (very high) peak. • AK-gravity has a limit scale of the gravitational quantum region 39 μm, which emerges as the limit scale in the objective wave collapse theory of Gherardi-Rimini-Weber. In the quantum region, the AK-gravity becomes a quantum gauge theory (AK quantum gravity) with the Lie group extended SU(2) = ε-tensor-group(four generators) as gauge group and a corresponding covariant derivative. • AK quantum gravity is fully renormalizable, we derive its Lagrangian, which is dimensionally renormalizable, the normalized one-graviton wave function, the graviton propagator, and demonstrate the calculation of cross-section from Feynman diagrams.展开更多
基金the University of French Polynesiafunding by several successive“Decision Aide a la Recherche”(DAR)grants to the Geodesy Observatory of Tahiti from the French Space Agency(CNES)+2 种基金fundings from the local government of French Polynesia(Observatoire Polynesien du Rechauffement Climatique)funding by“National Natural Science Foundation of China”(Grand No.41931075)funding by“the Fundamental Research Funds for the Central Universities"(Grand No.2042022kf1198)。
文摘In this study,we estimate the absolute vertical land motions at three tidal stations with collocated Global Navigation Satellite System(GNSS)receivers over French Polynesia during the period 2007-2020,and obtain,as ancillary results,estimates of the absolute changes in sea level at the same locations.To verify our processing approach to determining vertical motion,we first modeled vertical motion at the International GNSS Service(IGS)THTI station located in the capital island of Tahiti and compared our estimate with previous independent determinations,with a good agreement.We obtained the following estimates for the vertical land motions at the tide gauges:Tubuai island,Austral Archipelago-0.92±0.17 mm/yr,Vairao village,Tahiti Iti:-0.49±0.39 mm/yr,Rikitea,Gambier Archipelago-0.43±0.17 mm/yr.The absolute variations of the sea level are:Tubuai island,Austral Archipelago 5.25±0.60 mm/yr,Vairao village,Tahiti Iti:3.62±0.52 mm/yr,Rikitea,Gambier Archipelago 1.52±0.23 mm/yr.We discuss these absolute values in light of the values obtained from altimetric measurements and other means in French Polynesia.
基金funded by the Fund Project of China Academy of Railway Sciences Corporation Limited[Grant No.2022YJ194,2023YJ254].
文摘Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/approach-Finite element method was employed to analyze the stress and strain distribution on the track wheel web surface under varying wheel-rail forces.Locations with minimal coupling interference between vertical and lateral forces were identified as suitable for strain gauge installation.Findings-The results show that due to the track wheel web’s unique curved shape and wheel-rail force loading mechanism,both tensile and compressive states exit on the surface of the web.When vertical force is applied,Mises stress and strain are relatively high near the inner radius of 710 mm and the outer radius of 1110mmof the web.Under lateral force,high Mises stress and strain are observed near the radius of 670mmon the inner and outer sides of the web.As the wheel-rail force application point shifts laterally toward the outer side,the Mises stress and strain near the inner radius of 710 mm of the web gradually decrease under vertical force while gradually increasing near the outer radius of 1110 mm of the web.Under lateral force,the Mises stress and strain on the surface of the web remain relatively unchanged regardless of the wheel-rail force application point.Based on the analysis of stress and strain on the surface of the web under different wheel-rail forces,the inner radius of 870 mm is recommended as the optimal mounting location of strain gauges for measuring vertical force,while the inner radius of 1143 mm is suitable for measuring lateral force.Originality/value-The research findings provide valuable insights for determining optimal strain gauge locations and designing an effective track wheel force measurement system.
文摘We propose the new field potential by maintaining both the symmetry of the scalar gauge and the conservation law keeping N?ether’s theorem, while disregarding the symmetry of the vector gauge. The new potential forms like the well-type potential where a particle behaves almost freely but is very hard to escape without external energy, which can be interpreted as local confinement and asymptotic freedom. By assuming a 2-dimensional metric tensor in 4-dimensional space-time, we suggest the existence of 3 kinds of particles that resemble QCD with 3 color charges. We also show that the mass term exists but comes to zero and derive the charge and spin values. We can regard the particle with this new potential as a gluon, and the interaction in this well-type potential as a strong interaction for the properties of mass, charge, spin, and its behavior. We suggest the eight-fold way with this new particle, which is similar to the existing method based on SU (3) symmetry. Even though the strong interaction has been analyzed in the standard model and string theory, we build a new consistent model based on the theory of relativity including Riemann geometry, and show the unification of gravitational and strong interactional field.
文摘Using the Landau and symmetric gauges for the vector potential of a constant magnetic field and the quantum problem of a charged particle moving on a flat surface, we show the classical electromagnetic gauge transformation does not correspond to a one-dimensional unitary group transformation U(1) of the wave function for the quantum case. In addition, with the re-examination of the relation between the magnetic field B and its vector potential A, we found that, in order to have a consistent formulation of the dynamics of the charged particle with both expressions, we must have that B=∇×A if and only if B≠0.
基金the financial support provided by the Fundamental Research Funds for the Central Universities (Nos.FRF-TP-19-052A2 and FRF-BD-22-02)the National Natural Science Foundation of China (No.52001023)the Liao Ning Revitalization Talents Program (No.XLYC1907186)。
文摘This study investigated the influence of band microstructure induced by centerline segregation on carbide precipitation behavior and toughness in an 80 mm-thick 1 GPa low-carbon low-alloy steel plate.The quarter-thickness(1/4t)and half-thickness(1/2t)regions of the plate exhibited similar ductility and toughness after quenching.After tempering,the 1/4t region exhibited~50%and~25%enhancements in both the total elongation and low-temperature toughness at-40°C,respectively,without a decrease in yield strength,whereas the toughness of the 1/2t region decreased by~46%.After quenching,both the 1/4t and 1/2t regions exhibited lower bainite and lath martensite concentrations,but only the 1/2t region exhibited microstructure bands.Moreover,the tempered 1/4t region featured uniformly dispersed short rod-like M_(23)C_(6)carbides,and spherical MC precipitates with diameters of~20–100 nm and<20 nm,respectively.The uniformly dispersed nanosized M_(23)C_(6)carbides and MC precipitates contributed to the balance of high strength and high toughness.The band microstructure of the tempered 1/2t region featured a high density of large needle-like M3C carbides.The length and width of the large M3C carbides were~200–500 nm and~20–50 nm,respectively.Fractography analysis revealed that the high density of large carbides led to delamination cleavage fracture,which significantly deteriorated toughness.
基金funding from the“Talent Introduction Scientific Research Start-Up Fund”of Shandong University of Science and Technology(Grant number 0104060510217)the“Open Fund of State Key Laboratory of Geodesy and Earth’s Dynamics”(Grant number SKLGED2021-3-5)。
文摘Since 2008 a network of five sea-level monitoring stations was progressively installed in French Polynesia.The stations are autonomous and data,collected at a sampling rate of 1 or 2 min,are not only recorded locally,but also transferred in real time by a radio-link to the NOAA through the GOES satellite.The new ET34-ANA-V80 version of ETERNA,initially developed for Earth Tides analysis,is now able to analyze ocean tides records.Through a two-step validation scheme,we took advantage of the flexibility of this new version,operated in conjunction with the preprocessing facilities of the Tsoft software,to recover co rrected data series able to model sea-level variations after elimination of the ocean tides signal.We performed the tidal analysis of the tide gauge data with the highest possible selectivity(optimal wave grouping)and a maximum of additional terms(shallow water constituents).Our goal was to provide corrected data series and modelled ocean tides signal to compute tide-free sea-level variations as well as tidal prediction models with centimeter precision.We also present in this study the characteristics of the ocean tides in French Polynesia and preliminary results concerning the non-tidal variations of the sea level concerning the tide gauge setting.
文摘As an important part of water level warning in water conservancy projects,often due to the influence of environmental factors such as light and stains,the acquired water gauge images have sticky,broken and bright spot conditions,which affect the identification of water gauges.To solve this problem,a water gauge image denoising model based on improved adaptive total variation is proposed.Firstly,the regular term exponent in the adaptive total variational equation is changed to an inverse cosine function;secondly,the differential curvature is used to distinguish the image noise points and increase the smoothing strength at the noise points;finally,according to the characteristics of the gradient mode and adaptive gradient threshold after Gaussian filtering,the New model can adaptively denoise in the smooth area and protect the edge area,so as to have the characteristics of both edge-preserving denoising.The experimental results show that the new model has a great improvement in image vision,higher iteration efficiency and an average increase of 1.6 dB in peak signal-to-noise ratio,and an average increase of 9%in structural similarity,which is more beneficial to practical applications.
文摘Dear Editor,The advent of 23-gauge(G),25-G,and 27-G vitrectomy systems[1]since the beginning of the 21stcentury has allowed vitrectomy via a smaller incision compared to the 20-G system;hence the name"microincision vitrectomy surgery".Microincision vitrectomy surgery has gainedpopularity among vitreoretinal surgeons.
文摘This paper attempts to propose a grand unified guiding principle of gauge fields from the mathematical and physical picture of fiber bundles: it is believed that our universe may have more fundamental interactions than the four fundamental interactions, and the gauge fields of these fundamental interactions are just a unified gauge potential on the fiber bundle manifold or the components connected to the bottom manifold, that is, our universe;these components can meet the transformation of gauge potential, and even can be transformed from a fundamental interaction gauge potential to another fundamental interaction gauge potential, and can be summarized into a unified equation, namely the expression of the generalized gauge equation, corresponding to the gauge transformation invariance;so gauge transformation invariance is a necessary condition to unify field theory, but quantization of field is not a necessary condition;the four (or more) fundamental interaction fields of the universe are unified into a universal gauge field defined by the connection of the principal fiber bundle on the cosmic base manifold.
文摘Tanzania is one of the countries in Africa that has engaged in the projects for construction of the electrified Standard Gauge Railway (SGR). However, lack of integration of transportation and land-use planning threatens economic sustainability of the SGR project. This study was carried out for the purpose of finding-out how transportation can be integrated with land-use planning for economic sustainability of the project. The study was carried-out by using qualitative research approach through demonstration as case study. Findings show that construction of the SGR is not integrated with land-use planning around the stations and along the SGR corridor. It is concluded that economic sustainability of the SGR projects can be achieved by integration of transport and land-use planning. As demonstrated, it is recommended to deliberate for integration of transportation and land-use planning in the SGR projects of which the prime land within Transit Stations can be efficiently used by using Transit Oriented Development and secure more land for production activities around the Transit Stations and along the SGR corridor.
文摘The author of this paper has put forward a unified program of gauge field from the mathematical and physical picture of the principal associated bundles: thinking that our universe may have more fundamental interactions than the four fundamental interactions, and these basic interaction gauge fields are only the projection components to the base manifold, that is our universe, from a unified gauge potential or connection of the principal associated bundle manifold on the base manifold. These components can satisfy the transformation of gauge potential, and can even be transformed from one basic interaction gauge potential to another basic interaction gauge potential, and can be summarized into a unified equation, that is, the generalized gauge Equation (GGE), but the gauge potential or connection on the principal bundle is invariant, corresponding to the invariance of gauge transformation [1]. In this paper, we will continue to discuss this aspect concretely, and specifically construct a spatiotemporal model with the frame bundle as the principal bundle, and the tensor bundle as the associated bundle, so that the four fundamental interactions, especially the electromagnetic interaction and the gravitational interaction, can be reflected in the bottom manifold, that is, the regional distributions in our universe. Furthermore, this paper studies the existence of gauge transformation across basic interactions by establishing a model of gauge transformation of basic interaction field;it is found that the unified expression formula is GGE and the expression relation on the curvature of space-time. Therefore, the author discusses the feasibility of the generalized gauge transformation across the basic electromagnetic interaction and the basic gravitational interaction, and on this basis, specifically determines a method or way to find the generalized gauge transformation, so as to try to realize the last step of the “unification” of the four fundamental interactions in physics, that is, the “unification” of electromagnetism and gravity.
文摘Financing of the African Integrated High-Speed Railway Network (AIHSRN) through Standard Gauge Railway (SGR) Projects is very expensive. As a result, most of the African countries seek financial supports from the International Financial Institutions (IFIs). However, conditions provided by the IFIs through the Performance Standards (PS) of the International Financial Corporation (IFC) increase cost of the projects and thus, it becomes a burden to most of the African countries. This study aimed to explore the causes of IFC-PS through the SGR Projects that escalate costs and how to address them. The Tanzania SGR Lot 1 Project that covered 205 km from Dar es Salaam to Morogoro was selected as a case study. The methods used for data collection involved literature review, focus group discussions and interviews. The results and findings show a gap between the IFC-PS and the National Laws and Regulations that escalates costs of the projects if funds from the IFIs were to be secured. To bridge the gap, it is recommended that the African countries should engage into negotiations with the IFIs to agree to waive IFC-PS conditions that escalate costs provided they are adequately covered in the national laws and regulations;engagement of locally established national and regional financial institutions;and the responsible government institutions in the African countries should sit together for assessment and review of the IFC-PS against the national laws and regulations.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA1400400)the Fundamental Research Funds for the Central Universities,and the National Natural Science Foundation of China(Grant Nos.12174029 and 11922402).
文摘Uniaxial strain is a powerful tuning parameter that can control symmetry and anisotropic electronic properties in iron-based superconductors.However,accurately characterizing anisotropic strain can be challenging and complex.Here,we utilize a cryogenic optical system equipped with a high-spatial-resolution microscope to characterize surface strains in iron-based superconductors using the digital image correlation method.Compared with other methods such as high-resolution x-ray diffraction,strain gauge,and capacitive sensor,digital image correlation offers a non-contact full-field measurement approach,acting as an optical virtual strain gauge that provides high spatial resolution.The results measured on detwinned BaFe_(2)As_(2)are quantitatively consistent with the distortion measured by x-ray diffraction and neutron Larmor diffraction.These findings highlight the potential of cryogenic digital image correlation as an effective and accessible tool for probing the isotropic and anisotropic strains,facilitating applications of uniaxial strain tuning in research of quantum materials.
文摘As the eventful year of 2023 drew to a close,China’s decisive economic rebound over the preceding 11 months continued to propel steady recovery of the flagging global economy.Last November,China’s retail sales of consumer goods-a major gauge of consumption strength-maintained accelerated growth,evident in a registered year-on-year increase of 10.1 percent,according to National Bureau of Statistics(NBS)data published on December 15.During the January-November period,moreover,total retail sales of the country’s consumer goods swelled to RMB 42.79 trillion-a 7.2 percent increase over the previous year.
文摘This paper presents a new theory of gravity, called here Ashtekar-Kodama (AK) gravity, which is based on the Ashtekar-Kodama formulation of loop quantum gravity (LQG), yields in the limit the Einstein equations, and in the quantum regime a full renormalizable quantum gauge field theory. The three fundamental constraints (hamiltonian, gaussian and diffeomorphism) were formulated in 3-dimensional spatial form within LQG in Ashtekar formulation using the notion of the Kodama state with positive cosmological constant Λ. We introduce a 4-dimensional covariant version of the 3-dimensional (spatial) hamiltonian, gaussian and diffeomorphism constraints of LQG. We obtain 32 partial differential equations for the 16 variables E<sub>mn</sub> (E-tensor, inverse densitized tetrad of the metric) and 16 variables A<sub>mn</sub> (A-tensor, gravitational wave tensor). We impose the boundary condition: for large distance the E-generated metric g(E) becomes the GR-metric g (normally Schwarzschild-spacetime). The theory based on these Ashtekar-Kodama (AK) equations, and called in the following Ashtekar-Kodama (AK-) gravity has the following properties. • For Λ = 0 the AK equations become Einstein equations, A-tensor is trivial (constant), and the E-generated metric g(E) is identical with the GR-metric g. • When the AK-equations are developed into a Λ-power series, the Λ-term yields a gravitational wave equation, which has only at least quadrupole wave solutions and becomes in the limit of large distance r the (normal electromagnetic) wave equation. • AK-gravity, as opposed to GR, has no singularity at the horizon: the singularity in the metric becomes a (very high) peak. • AK-gravity has a limit scale of the gravitational quantum region 39 μm, which emerges as the limit scale in the objective wave collapse theory of Gherardi-Rimini-Weber. In the quantum region, the AK-gravity becomes a quantum gauge theory (AK quantum gravity) with the Lie group extended SU(2) = ε-tensor-group(four generators) as gauge group and a corresponding covariant derivative. • AK quantum gravity is fully renormalizable, we derive its Lagrangian, which is dimensionally renormalizable, the normalized one-graviton wave function, the graviton propagator, and demonstrate the calculation of cross-section from Feynman diagrams.