To accurately model flows with shock waves using staggered-grid Lagrangian hydrodynamics, the artificial viscosity has to be introduced to convert kinetic energy into internal energy, thereby increasing the entropy ac...To accurately model flows with shock waves using staggered-grid Lagrangian hydrodynamics, the artificial viscosity has to be introduced to convert kinetic energy into internal energy, thereby increasing the entropy across shocks. Determining the appropriate strength of the artificial viscosity is an art and strongly depends on the particular problem and experience of the researcher. The objective of this study is to pose the problem of finding the appropriate strength of the artificial viscosity as an optimization problem and solve this problem using machine learning (ML) tools, specifically using surrogate models based on Gaussian Process regression (GPR) and Bayesian analysis. We describe the optimization method and discuss various practical details of its implementation. The shock-containing problems for which we apply this method all have been implemented in the LANL code FLAG (Burton in Connectivity structures and differencing techniques for staggered-grid free-Lagrange hydrodynamics, Tech. Rep. UCRL-JC-110555, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1992, in Consistent finite-volume discretization of hydrodynamic conservation laws for unstructured grids, Tech. Rep. CRL-JC-118788, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, Multidimensional discretization of conservation laws for unstructured polyhedral grids, Tech. Rep. UCRL-JC-118306, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, in FLAG, a multi-dimensional, multiple mesh, adaptive free-Lagrange, hydrodynamics code. In: NECDC, 1992). First, we apply ML to find optimal values to isolated shock problems of different strengths. Second, we apply ML to optimize the viscosity for a one-dimensional (1D) propagating detonation problem based on Zel’dovich-von Neumann-Doring (ZND) (Fickett and Davis in Detonation: theory and experiment. Dover books on physics. Dover Publications, Mineola, 2000) detonation theory using a reactive burn model. We compare results for default (currently used values in FLAG) and optimized values of the artificial viscosity for these problems demonstrating the potential for significant improvement in the accuracy of computations.展开更多
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust...Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.展开更多
The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regressi...The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regression(GPR)model based on Conditional Likelihood Lower Bound Search(CLLBS)to optimize the design of the generator,which can filter the noise in the data and search for global optimization by combining the Conditional Likelihood Lower Bound Search method.Taking the efficiency optimization of 15 kW Permanent Magnet Synchronous Motor as an example.Firstly,this method uses the elementary effect analysis to choose the sensitive variables,combining the evolutionary algorithm to design the super Latin cube sampling plan;Then the generator-converter system is simulated by establishing a co-simulation platform to obtain data.A Gaussian process regression model combing the method of the conditional likelihood lower bound search is established,which combined the chi-square test to optimize the accuracy of the model globally.Secondly,after the model reaches the accuracy,the Pareto frontier is obtained through the NSGA-II algorithm by considering the maximum output torque as a constraint.Last,the constrained optimization is transformed into an unconstrained optimizing problem by introducing maximum constrained improvement expectation(CEI)optimization method based on the re-interpolation model,which cross-validated the optimization results of the Gaussian process regression model.The above method increase the efficiency of generator by 0.76%and 0.5%respectively;And this method can be used for rapid modeling and multi-objective optimization of generator systems.展开更多
The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators ...The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators and ensemble Gaussian process regression(EGPR)to predict the SOH of LIBs.Firstly,the degradation process of an LIB is analyzed through indirect health indicators(HIs)derived from voltage and temperature during discharge.Next,the parameters in the EGPR model are optimized using the gannet optimization algorithm(GOA),and the EGPR is employed to estimate the SOH of LIBs.Finally,the proposed model is tested under various experimental scenarios and compared with other machine learning models.The effectiveness of EGPR model is demonstrated using the National Aeronautics and Space Administration(NASA)LIB.The root mean square error(RMSE)is maintained within 0.20%,and the mean absolute error(MAE)is below 0.16%,illustrating the proposed approach’s excellent predictive accuracy and wide applicability.展开更多
The conventional single model strategy may be ill- suited due to the multiplicity of operation phases and system uncertainty. A novel global-local discriminant analysis (GLDA) based Gaussian process regression (GPR...The conventional single model strategy may be ill- suited due to the multiplicity of operation phases and system uncertainty. A novel global-local discriminant analysis (GLDA) based Gaussian process regression (GPR) approach is developed for the quality prediction of nonlinear and multiphase batch processes. After the collected data is preprocessed through batchwise unfolding, the hidden Markov model (HMM) is applied to identify different operation phases. A GLDA algorithm is also presented to extract the appropriate process variables highly correlated with the quality variables, decreasing the complexity of modeling. Besides, the multiple local GPR models are built in the reduced- dimensional space for all the identified operation phases. Furthermore, the HMM-based state estimation is used to classify each measurement sample of a test batch into a corresponding phase with the maximal likelihood estimation. Therefore, the local GPR model with respect to specific phase is selected for online prediction. The effectiveness of the proposed prediction approach is demonstrated through the multiphase penicillin fermentation process. The comparison results show that the proposed GLDA-GPR approach is superior to the regular GPR model and the GPR based on HMM (HMM-GPR) model.展开更多
High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important...High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important role in the performance evaluation of the navigation system.Traditional filter estimation methods usually assume that the measurement noise conforms to the Gaussian distribution,without considering the influence of the pollution introduced by the GNSS signal,which is susceptible to external interference.To address this problem,a high-precision filter estimation method using Gaussian process regression(GPR)is proposed to enhance the prediction and estimation capability of the unscented quaternion estimator(USQUE)to improve the navigation accuracy.Based on the advantage of the GPR machine learning function,the estimation performance of the sliding window for model training is measured.This method estimates the output of the observation information source through the measurement window and realizes the robust measurement update of the filter.The combination of GPR and the USQUE algorithm establishes a robust mechanism framework,which enhances the robustness and stability of traditional methods.The results of the trajectory simulation experiment and SINS/GNSS car-mounted tests indicate that the strategy has strong robustness and high estimation accuracy,which demonstrates the effectiveness of the proposed method.展开更多
The dynamic soft sensor based on a single Gaussian process regression(GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation proce...The dynamic soft sensor based on a single Gaussian process regression(GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation processes,may result in large prediction errors and complexity of the soft sensor.Therefore,a dynamic soft sensor based on Gaussian mixture regression(GMR) was proposed to overcome the problems.Two structure parameters,the number of Gaussian components and the order of the model,are crucial to the soft sensor model.To achieve a simple and effective soft sensor,an iterative strategy was proposed to optimize the two structure parameters synchronously.For the aim of comparisons,the proposed dynamic GMR soft sensor and the existing dynamic GPR soft sensor were both investigated to estimate biomass concentration in a Penicillin simulation process and an industrial Erythromycin fermentation process.Results show that the proposed dynamic GMR soft sensor has higher prediction accuracy and is more suitable for dynamic multiphase/multimode fermentation processes.展开更多
The resolution of ocean reanalysis datasets is generally low because of the limited resolution of their associated numerical models.Low-resolution ocean reanalysis datasets are therefore usually interpolated to provid...The resolution of ocean reanalysis datasets is generally low because of the limited resolution of their associated numerical models.Low-resolution ocean reanalysis datasets are therefore usually interpolated to provide an initial or boundary field for higher-resolution regional ocean models.However,traditional interpolation methods(nearest neighbor interpolation,bilinear interpolation,and bicubic interpolation)lack physical constraints and can generate significant errors at land-sea boundaries and around islands.In this paper,a machine learning method is used to design an interpolation algorithm based on Gaussian process regression.The method uses a multiscale kernel function to process two-dimensional space meteorological ocean processes and introduces multiscale physical feature information(sea surface wind stress,sea surface heat flux,and ocean current velocity).This greatly improves the spatial resolution of ocean features and the interpolation accuracy.The eff ectiveness of the algorithm was validated through interpolation experiments relating to sea surface temperature(SST).The root mean square error(RMSE)of the interpolation algorithm was 38.9%,43.7%,and 62.4%lower than that of bilinear interpolation,bicubic interpolation,and nearest neighbor interpolation,respectively.The interpolation accuracy was also significantly better in off shore area and around islands.The algorithm has an acceptable runtime cost and good temporal and spatial generalizability.展开更多
It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integr...It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integrating regular real-time current short pulse tests with data-driven Gaussian process regression algorithm,an efficient battery estimation has been successfully developed and validated for batteries with capacity ranging from 100%of the state of health(SOH)to below 50%,reaching an average accuracy as high as 95%.Interestingly,the proposed pulse test strategy for battery capacity measurement could reduce test time by more than 80%compared with regular long charge/discharge tests.The short-term features of the current pulse test were selected for an optimal training process.Data at different voltage stages and state of charge(SOC)are collected and explored to find the most suitable estimation model.In particular,we explore the validity of five different machine-learning methods for estimating capacity driven by pulse features,whereas Gaussian process regression with Matern kernel performs the best,providing guidance for future exploration.The new strategy of combining short pulse tests with machine-learning algorithms could further open window for efficiently forecasting lithium-ion battery remaining capacity.展开更多
Gaussian process(GP)regression is a flexible non-parametric approach to approximate complex models.In many cases,these models correspond to processes with bounded physical properties.Standard GP regression typically r...Gaussian process(GP)regression is a flexible non-parametric approach to approximate complex models.In many cases,these models correspond to processes with bounded physical properties.Standard GP regression typically results in a proxy model which is unbounded for all temporal or spacial points,and thus leaves the possibility of taking on infeasible values.We propose an approach to enforce the physical constraints in a probabilistic way under the GP regression framework.In addition,this new approach reduces the variance in the resulting GP model.展开更多
The prediction of magnitude (M) of reservoir induced earthquake is an important task in earthquake engineering. In this article, we employ a Support Vector Machine (SVM) and Gaussian Process Regression (GPR) for...The prediction of magnitude (M) of reservoir induced earthquake is an important task in earthquake engineering. In this article, we employ a Support Vector Machine (SVM) and Gaussian Process Regression (GPR) for prediction of reservoir induced earthquake M based on reservoir parameters. Comprehensive parameter (E) and maximum reservoir depth] (H) are considered as inputs to the SVM and GPR. We give an equation for determination oil reservoir induced earthquake M. The developed SVM and GPR have been compared with] the Artificial Neural Network (ANN) method. The results show that the developed SVM and] GPR are efficient tools for prediction of reservoir induced earthquake M. /展开更多
In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the ...In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism.To solve these problems,we put forward a multi-output Gaussian process regression(MGPR)model based on the combined kernel function for the polyester esterification process.Since the seasonal and trend decomposition using loess(STL)can extract the periodic and trend characteristics of time series,a combined kernel function based on the STL and the kernel function analysis is constructed for the MGPR.The effectiveness of the proposed model is verified by the actual polyester esterification process data collected from fiber production.展开更多
Gaussian Process Regression (GPR) can be applied to the problem of estimating a spatially-varying field on a regular grid, based on noisy observations made at irregular positions. In cases where the field has a weak t...Gaussian Process Regression (GPR) can be applied to the problem of estimating a spatially-varying field on a regular grid, based on noisy observations made at irregular positions. In cases where the field has a weak time dependence, one may desire to estimate the present-time value of the field using a time window of data that rolls forward as new data become available, leading to a sequence of solution updates. We introduce “rolling GPR” (or moving window GPR) and present a procedure for implementing that is more computationally efficient than solving the full GPR problem at each update. Furthermore, regime shifts (sudden large changes in the field) can be detected by monitoring the change in posterior covariance of the predicted data during the updates, and their detrimental effect is mitigated by shortening the time window as the variance rises, and then decreasing it as it falls (but within prior bounds). A set of numerical experiments is provided that demonstrates the viability of the procedure.展开更多
In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot al...In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.展开更多
In material modeling,the calculation speed using the empirical potentials is fast compared to the first principle calculations,but the results are not as accurate as of the first principle calculations.First principle...In material modeling,the calculation speed using the empirical potentials is fast compared to the first principle calculations,but the results are not as accurate as of the first principle calculations.First principle calculations are accurate but slow and very expensive to calculate.In this work,first,the H-H binding energy and H2-H2 interaction energy are calculated using the first principle calculations which can be applied to the Tersoff empirical potential.Second,the H-H parameters are estimated.After fitting H-H parameters,the mechanical properties are obtained.Finally,to integrate both the low-fidelity empirical potential data and the data from the high-fidelity firstprinciple calculations,the multi-fidelity Gaussian process regression is employed to predict the HH binding energy and the H2-H2 interaction energy.Numerical results demonstrate the accuracy of the developed empirical potentials.展开更多
Lithium-ion batteries(LIBs)are widely used in transportation,energy storage,and other fields.The prediction of the remaining useful life(RUL)of lithium batteries not only provides a reference for health management but...Lithium-ion batteries(LIBs)are widely used in transportation,energy storage,and other fields.The prediction of the remaining useful life(RUL)of lithium batteries not only provides a reference for health management but also serves as a basis for assessing the residual value of the battery.In order to improve the prediction accuracy of the RUL of LIBs,a two-phase RUL early prediction method combining neural network and Gaussian process regression(GPR)is proposed.In the initial phase,the features related to the capacity degradation of LIBs are utilized to train the neural network model,which is used to predict the initial cycle lifetime of 124 LIBs.The Pearson coefficient’s two most significant characteristic factors and the predicted normalized lifetime form a 3D space.The Euclidean distance between the test dataset and each cell in the training dataset and validation dataset is calculated,and the shortest distance is considered to have a similar degradation pattern,which is used to determine the initial Dual Exponential Model(DEM).In the second phase,GPR uses the DEM as the initial parameter to predict each test set’s early RUL(ERUL).By testing four batteries under different working conditions,the RMSE of all capacity estimation is less than 1.2%,and the accuracy percentage(AP)of remaining life prediction is more than 98%.Experiments show that the method does not need human intervention and has high prediction accuracy.展开更多
An intelligent wind tunnel using an active learning approach automates flow control experiments to discover the aerodynamic impact of sweeping jet on a swept wing. A Gaussian process regression model is established to...An intelligent wind tunnel using an active learning approach automates flow control experiments to discover the aerodynamic impact of sweeping jet on a swept wing. A Gaussian process regression model is established to study the jet actuator's performance at various attack and flap deflection angles. By selectively focusing on the most informative experiments, the proposed framework was able to predict 3721 wing conditions from just 55experiments, significantly reducing the number of experiments required and leading to faster and cost-effective predictions. The results show that the angle of attack and flap deflection angle are coupled to affect the effectiveness of the sweeping jet. Meanwhile, increasing the jet momentum coefficient can contribute to lift enhancement;a momentum coefficient of 3% can increase the lift coefficient by at most 0.28. Additionally, the improvement effects are more pronounced when actuators are placed closer to the wing root.展开更多
Camera-based object tracking systems in a given closed environment lack privacy and confidentiality.In this study,light detection and ranging(LiDAR)was applied to track objects similar to the camera tracking in a clos...Camera-based object tracking systems in a given closed environment lack privacy and confidentiality.In this study,light detection and ranging(LiDAR)was applied to track objects similar to the camera tracking in a closed environment,guaranteeing privacy and confidentiality.The primary objective was to demonstrate the efficacy of the proposed technique through carefully designed experiments conducted using two scenarios.In Scenario I,the study illustrates the capability of the proposed technique to detect the locations of multiple objects positioned on a flat surface,achieved by analyzing LiDAR data collected from several locations within the closed environment.Scenario II demonstrates the effectiveness of the proposed technique in detecting multiple objects using LiDAR data obtained from a single,fixed location.Real-time experiments are conducted with human subjects navigating predefined paths.Three individuals move within an environment,while LiDAR,fixed at the center,dynamically tracks and identifies their locations at multiple instances.Results demonstrate that a single,strategically positioned LiDAR can adeptly detect objects in motion around it.Furthermore,this study provides a comparison of various regression techniques for predicting bounding box coordinates.Gaussian process regression(GPR),combined with particle swarm optimization(PSO)for prediction,achieves the lowest prediction mean square error of all the regression techniques examined at 0.01.Hyperparameter tuning of GPR using PSO significantly minimizes the regression error.Results of the experiment pave the way for its extension to various real-time applications such as crowd management in malls,surveillance systems,and various Internet of Things scenarios.展开更多
Consumption of the electric power highly depends on the Season under consideration. The various means of power generation methods using renewable resources such as sunlight, wind, rain, tides, and waves are season dep...Consumption of the electric power highly depends on the Season under consideration. The various means of power generation methods using renewable resources such as sunlight, wind, rain, tides, and waves are season dependent. This paves the way for analyzing the demand for electric power based on various Seasons. Many traditional methods are utilized previously for the seasonal based electricity demand forecasting. With the development of the advanced tools, these methods are replaced by efficient forecasting techniques. In this paper, a WEKA time series forecasting is being done for the electric power demand for the three seasons such as summer, winter and rainy seasons. The monthly electric consumption data of domestic category is collected from Tamil Nadu Electricity Board (TNEB). Data collected has been pruned based on the three seasons. The WEKA learning algorithms such as Multilayer Perceptron, Support Vector Machine, Linear Regression, and Gaussian Process are used for implementation. The Mean Absolute Error (MAE) and Direction Accuracy (DA) are calculated for the WEKA learning algorithms and they are compared to find the best learning algorithm. The Support Vector Machine algorithm exhibits low Mean Absolute Error and high Direction Accuracy than other WEKA learning algorithms. Hence, the Support Vector Machine learning algorithm is proven to be the WEKA learning algorithm for seasonal based electricity demand forecasting. The need of the hour is to predict and act in the deficit power. This paper is a prelude for such activity and an eye opener in this field.展开更多
The remaining useful life(RUL)estimation of bearings is critical for ensuring the reliability of mechanical systems.Owing to the rapid development of deep learning methods,a multitude of data-driven RUL estimation app...The remaining useful life(RUL)estimation of bearings is critical for ensuring the reliability of mechanical systems.Owing to the rapid development of deep learning methods,a multitude of data-driven RUL estimation approaches have been proposed recently.However,the following problems remain in existing methods:1)Most network models use raw data or statistical features as input,which renders it difficult to extract complex fault-related information hidden in signals;2)for current observations,the dependence between current states is emphasized,but their complex dependence on previous states is often disregarded;3)the output of neural networks is directly used as the estimated RUL in most studies,resulting in extremely volatile prediction results that lack robustness.Hence,a novel prognostics approach is proposed based on a time-frequency representation(TFR)subsequence,three-dimensional convolutional neural network(3DCNN),and Gaussian process regression(GPR).The approach primarily comprises two aspects:construction of a health indicator(HI)using the TFR-subsequence-3DCNN model,and RUL estimation based on the GPR model.The raw signals of the bearings are converted into TFR-subsequences by continuous wavelet transform and a dislocated overlapping strategy.Subsequently,the 3DCNN is applied to extract the hidden spatiotemporal features from the TFR-subsequences and construct HIs.Finally,the RUL of the bearings is estimated using the GPR model,which can also define the probability distribution of the potential function and prediction confidence.Experiments on the PRONOSTIA platform demonstrate the superiority of the proposed TFR-subsequence-3DCNN-GPR approach.The use of degradation-related spatiotemporal features in signals is proposed herein to achieve a highly accurate bearing RUL prediction with uncertainty quantification.展开更多
基金This work was performed under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No.89233218CNA000001The Authors gratefully acknowledge the support of the US Department of Energy National Nuclear Security Administration Advanced Simulation and Computing Program.LA-UR-22-33159.
文摘To accurately model flows with shock waves using staggered-grid Lagrangian hydrodynamics, the artificial viscosity has to be introduced to convert kinetic energy into internal energy, thereby increasing the entropy across shocks. Determining the appropriate strength of the artificial viscosity is an art and strongly depends on the particular problem and experience of the researcher. The objective of this study is to pose the problem of finding the appropriate strength of the artificial viscosity as an optimization problem and solve this problem using machine learning (ML) tools, specifically using surrogate models based on Gaussian Process regression (GPR) and Bayesian analysis. We describe the optimization method and discuss various practical details of its implementation. The shock-containing problems for which we apply this method all have been implemented in the LANL code FLAG (Burton in Connectivity structures and differencing techniques for staggered-grid free-Lagrange hydrodynamics, Tech. Rep. UCRL-JC-110555, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1992, in Consistent finite-volume discretization of hydrodynamic conservation laws for unstructured grids, Tech. Rep. CRL-JC-118788, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, Multidimensional discretization of conservation laws for unstructured polyhedral grids, Tech. Rep. UCRL-JC-118306, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, in FLAG, a multi-dimensional, multiple mesh, adaptive free-Lagrange, hydrodynamics code. In: NECDC, 1992). First, we apply ML to find optimal values to isolated shock problems of different strengths. Second, we apply ML to optimize the viscosity for a one-dimensional (1D) propagating detonation problem based on Zel’dovich-von Neumann-Doring (ZND) (Fickett and Davis in Detonation: theory and experiment. Dover books on physics. Dover Publications, Mineola, 2000) detonation theory using a reactive burn model. We compare results for default (currently used values in FLAG) and optimized values of the artificial viscosity for these problems demonstrating the potential for significant improvement in the accuracy of computations.
基金supported in part by the National Key Research and Development Program of China(2021YFC2902703)the National Natural Science Foundation of China(62173078,61773105,61533007,61873049,61873053,61703085,61374147)。
文摘Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.
基金supported in part by the National Key Research and Development Program of China(2019YFB1503700)the Hunan Natural Science Foundation-Science and Education Joint Project(2019JJ70063)。
文摘The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regression(GPR)model based on Conditional Likelihood Lower Bound Search(CLLBS)to optimize the design of the generator,which can filter the noise in the data and search for global optimization by combining the Conditional Likelihood Lower Bound Search method.Taking the efficiency optimization of 15 kW Permanent Magnet Synchronous Motor as an example.Firstly,this method uses the elementary effect analysis to choose the sensitive variables,combining the evolutionary algorithm to design the super Latin cube sampling plan;Then the generator-converter system is simulated by establishing a co-simulation platform to obtain data.A Gaussian process regression model combing the method of the conditional likelihood lower bound search is established,which combined the chi-square test to optimize the accuracy of the model globally.Secondly,after the model reaches the accuracy,the Pareto frontier is obtained through the NSGA-II algorithm by considering the maximum output torque as a constraint.Last,the constrained optimization is transformed into an unconstrained optimizing problem by introducing maximum constrained improvement expectation(CEI)optimization method based on the re-interpolation model,which cross-validated the optimization results of the Gaussian process regression model.The above method increase the efficiency of generator by 0.76%and 0.5%respectively;And this method can be used for rapid modeling and multi-objective optimization of generator systems.
基金supported by Fundamental Research Program of Shanxi Province(No.202203021211088)Shanxi Provincial Natural Science Foundation(No.202204021301049).
文摘The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators and ensemble Gaussian process regression(EGPR)to predict the SOH of LIBs.Firstly,the degradation process of an LIB is analyzed through indirect health indicators(HIs)derived from voltage and temperature during discharge.Next,the parameters in the EGPR model are optimized using the gannet optimization algorithm(GOA),and the EGPR is employed to estimate the SOH of LIBs.Finally,the proposed model is tested under various experimental scenarios and compared with other machine learning models.The effectiveness of EGPR model is demonstrated using the National Aeronautics and Space Administration(NASA)LIB.The root mean square error(RMSE)is maintained within 0.20%,and the mean absolute error(MAE)is below 0.16%,illustrating the proposed approach’s excellent predictive accuracy and wide applicability.
基金The Fundamental Research Funds for the Central Universities(No.JUDCF12027,JUSRP51323B)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX12_0734)
文摘The conventional single model strategy may be ill- suited due to the multiplicity of operation phases and system uncertainty. A novel global-local discriminant analysis (GLDA) based Gaussian process regression (GPR) approach is developed for the quality prediction of nonlinear and multiphase batch processes. After the collected data is preprocessed through batchwise unfolding, the hidden Markov model (HMM) is applied to identify different operation phases. A GLDA algorithm is also presented to extract the appropriate process variables highly correlated with the quality variables, decreasing the complexity of modeling. Besides, the multiple local GPR models are built in the reduced- dimensional space for all the identified operation phases. Furthermore, the HMM-based state estimation is used to classify each measurement sample of a test batch into a corresponding phase with the maximal likelihood estimation. Therefore, the local GPR model with respect to specific phase is selected for online prediction. The effectiveness of the proposed prediction approach is demonstrated through the multiphase penicillin fermentation process. The comparison results show that the proposed GLDA-GPR approach is superior to the regular GPR model and the GPR based on HMM (HMM-GPR) model.
基金supported by the National Natural Science Foundation of China(61873275,61703419,425317829).
文摘High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important role in the performance evaluation of the navigation system.Traditional filter estimation methods usually assume that the measurement noise conforms to the Gaussian distribution,without considering the influence of the pollution introduced by the GNSS signal,which is susceptible to external interference.To address this problem,a high-precision filter estimation method using Gaussian process regression(GPR)is proposed to enhance the prediction and estimation capability of the unscented quaternion estimator(USQUE)to improve the navigation accuracy.Based on the advantage of the GPR machine learning function,the estimation performance of the sliding window for model training is measured.This method estimates the output of the observation information source through the measurement window and realizes the robust measurement update of the filter.The combination of GPR and the USQUE algorithm establishes a robust mechanism framework,which enhances the robustness and stability of traditional methods.The results of the trajectory simulation experiment and SINS/GNSS car-mounted tests indicate that the strategy has strong robustness and high estimation accuracy,which demonstrates the effectiveness of the proposed method.
基金Supported by the Natural Science Foundation of Jiangsu Province of China(BK20130531)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD[2011]6)Jiangsu Government Scholarship
文摘The dynamic soft sensor based on a single Gaussian process regression(GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation processes,may result in large prediction errors and complexity of the soft sensor.Therefore,a dynamic soft sensor based on Gaussian mixture regression(GMR) was proposed to overcome the problems.Two structure parameters,the number of Gaussian components and the order of the model,are crucial to the soft sensor model.To achieve a simple and effective soft sensor,an iterative strategy was proposed to optimize the two structure parameters synchronously.For the aim of comparisons,the proposed dynamic GMR soft sensor and the existing dynamic GPR soft sensor were both investigated to estimate biomass concentration in a Penicillin simulation process and an industrial Erythromycin fermentation process.Results show that the proposed dynamic GMR soft sensor has higher prediction accuracy and is more suitable for dynamic multiphase/multimode fermentation processes.
基金Supported by the National Natural Science Foundation of China(Nos.41675097,41375113)。
文摘The resolution of ocean reanalysis datasets is generally low because of the limited resolution of their associated numerical models.Low-resolution ocean reanalysis datasets are therefore usually interpolated to provide an initial or boundary field for higher-resolution regional ocean models.However,traditional interpolation methods(nearest neighbor interpolation,bilinear interpolation,and bicubic interpolation)lack physical constraints and can generate significant errors at land-sea boundaries and around islands.In this paper,a machine learning method is used to design an interpolation algorithm based on Gaussian process regression.The method uses a multiscale kernel function to process two-dimensional space meteorological ocean processes and introduces multiscale physical feature information(sea surface wind stress,sea surface heat flux,and ocean current velocity).This greatly improves the spatial resolution of ocean features and the interpolation accuracy.The eff ectiveness of the algorithm was validated through interpolation experiments relating to sea surface temperature(SST).The root mean square error(RMSE)of the interpolation algorithm was 38.9%,43.7%,and 62.4%lower than that of bilinear interpolation,bicubic interpolation,and nearest neighbor interpolation,respectively.The interpolation accuracy was also significantly better in off shore area and around islands.The algorithm has an acceptable runtime cost and good temporal and spatial generalizability.
基金support from Shenzhen Municipal Development and Reform Commission(Grant Number:SDRC[2016]172)Shenzhen Science and Technology Program(Grant No.KQTD20170810150821146)Interdisciplinary Research and Innovation Fund of Tsinghua Shenzhen International Graduate School,and Shanghai Shun Feng Machinery Co.,Ltd.
文摘It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integrating regular real-time current short pulse tests with data-driven Gaussian process regression algorithm,an efficient battery estimation has been successfully developed and validated for batteries with capacity ranging from 100%of the state of health(SOH)to below 50%,reaching an average accuracy as high as 95%.Interestingly,the proposed pulse test strategy for battery capacity measurement could reduce test time by more than 80%compared with regular long charge/discharge tests.The short-term features of the current pulse test were selected for an optimal training process.Data at different voltage stages and state of charge(SOC)are collected and explored to find the most suitable estimation model.In particular,we explore the validity of five different machine-learning methods for estimating capacity driven by pulse features,whereas Gaussian process regression with Matern kernel performs the best,providing guidance for future exploration.The new strategy of combining short pulse tests with machine-learning algorithms could further open window for efficiently forecasting lithium-ion battery remaining capacity.
基金supported by Simons Foundationsupported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research as part of Physics-Informed Learning Machines for Multiscale and Multiphysics Problems (PhILMs)
文摘Gaussian process(GP)regression is a flexible non-parametric approach to approximate complex models.In many cases,these models correspond to processes with bounded physical properties.Standard GP regression typically results in a proxy model which is unbounded for all temporal or spacial points,and thus leaves the possibility of taking on infeasible values.We propose an approach to enforce the physical constraints in a probabilistic way under the GP regression framework.In addition,this new approach reduces the variance in the resulting GP model.
文摘The prediction of magnitude (M) of reservoir induced earthquake is an important task in earthquake engineering. In this article, we employ a Support Vector Machine (SVM) and Gaussian Process Regression (GPR) for prediction of reservoir induced earthquake M based on reservoir parameters. Comprehensive parameter (E) and maximum reservoir depth] (H) are considered as inputs to the SVM and GPR. We give an equation for determination oil reservoir induced earthquake M. The developed SVM and GPR have been compared with] the Artificial Neural Network (ANN) method. The results show that the developed SVM and] GPR are efficient tools for prediction of reservoir induced earthquake M. /
基金Natural Science Foundation of Shanghai,China(No.19ZR1402300)。
文摘In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism.To solve these problems,we put forward a multi-output Gaussian process regression(MGPR)model based on the combined kernel function for the polyester esterification process.Since the seasonal and trend decomposition using loess(STL)can extract the periodic and trend characteristics of time series,a combined kernel function based on the STL and the kernel function analysis is constructed for the MGPR.The effectiveness of the proposed model is verified by the actual polyester esterification process data collected from fiber production.
文摘Gaussian Process Regression (GPR) can be applied to the problem of estimating a spatially-varying field on a regular grid, based on noisy observations made at irregular positions. In cases where the field has a weak time dependence, one may desire to estimate the present-time value of the field using a time window of data that rolls forward as new data become available, leading to a sequence of solution updates. We introduce “rolling GPR” (or moving window GPR) and present a procedure for implementing that is more computationally efficient than solving the full GPR problem at each update. Furthermore, regime shifts (sudden large changes in the field) can be detected by monitoring the change in posterior covariance of the predicted data during the updates, and their detrimental effect is mitigated by shortening the time window as the variance rises, and then decreasing it as it falls (but within prior bounds). A set of numerical experiments is provided that demonstrates the viability of the procedure.
基金supported by the SP2024/089 Project by the Faculty of Materials Science and Technology,VˇSB-Technical University of Ostrava.
文摘In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.
基金We gratefully acknowledge the support from the National Science Foundation of USA(Grants DMS-1555072 and DMS-1736364).
文摘In material modeling,the calculation speed using the empirical potentials is fast compared to the first principle calculations,but the results are not as accurate as of the first principle calculations.First principle calculations are accurate but slow and very expensive to calculate.In this work,first,the H-H binding energy and H2-H2 interaction energy are calculated using the first principle calculations which can be applied to the Tersoff empirical potential.Second,the H-H parameters are estimated.After fitting H-H parameters,the mechanical properties are obtained.Finally,to integrate both the low-fidelity empirical potential data and the data from the high-fidelity firstprinciple calculations,the multi-fidelity Gaussian process regression is employed to predict the HH binding energy and the H2-H2 interaction energy.Numerical results demonstrate the accuracy of the developed empirical potentials.
基金supported by the Major Science and Technology Projects for Independent Innovation of China FAW Group Co.,Ltd.(Grant Nos.20220301018GX and 20220301019GX).
文摘Lithium-ion batteries(LIBs)are widely used in transportation,energy storage,and other fields.The prediction of the remaining useful life(RUL)of lithium batteries not only provides a reference for health management but also serves as a basis for assessing the residual value of the battery.In order to improve the prediction accuracy of the RUL of LIBs,a two-phase RUL early prediction method combining neural network and Gaussian process regression(GPR)is proposed.In the initial phase,the features related to the capacity degradation of LIBs are utilized to train the neural network model,which is used to predict the initial cycle lifetime of 124 LIBs.The Pearson coefficient’s two most significant characteristic factors and the predicted normalized lifetime form a 3D space.The Euclidean distance between the test dataset and each cell in the training dataset and validation dataset is calculated,and the shortest distance is considered to have a similar degradation pattern,which is used to determine the initial Dual Exponential Model(DEM).In the second phase,GPR uses the DEM as the initial parameter to predict each test set’s early RUL(ERUL).By testing four batteries under different working conditions,the RMSE of all capacity estimation is less than 1.2%,and the accuracy percentage(AP)of remaining life prediction is more than 98%.Experiments show that the method does not need human intervention and has high prediction accuracy.
基金supported by the National Natural Science Foundation of China (Grant No.92271107)。
文摘An intelligent wind tunnel using an active learning approach automates flow control experiments to discover the aerodynamic impact of sweeping jet on a swept wing. A Gaussian process regression model is established to study the jet actuator's performance at various attack and flap deflection angles. By selectively focusing on the most informative experiments, the proposed framework was able to predict 3721 wing conditions from just 55experiments, significantly reducing the number of experiments required and leading to faster and cost-effective predictions. The results show that the angle of attack and flap deflection angle are coupled to affect the effectiveness of the sweeping jet. Meanwhile, increasing the jet momentum coefficient can contribute to lift enhancement;a momentum coefficient of 3% can increase the lift coefficient by at most 0.28. Additionally, the improvement effects are more pronounced when actuators are placed closer to the wing root.
文摘Camera-based object tracking systems in a given closed environment lack privacy and confidentiality.In this study,light detection and ranging(LiDAR)was applied to track objects similar to the camera tracking in a closed environment,guaranteeing privacy and confidentiality.The primary objective was to demonstrate the efficacy of the proposed technique through carefully designed experiments conducted using two scenarios.In Scenario I,the study illustrates the capability of the proposed technique to detect the locations of multiple objects positioned on a flat surface,achieved by analyzing LiDAR data collected from several locations within the closed environment.Scenario II demonstrates the effectiveness of the proposed technique in detecting multiple objects using LiDAR data obtained from a single,fixed location.Real-time experiments are conducted with human subjects navigating predefined paths.Three individuals move within an environment,while LiDAR,fixed at the center,dynamically tracks and identifies their locations at multiple instances.Results demonstrate that a single,strategically positioned LiDAR can adeptly detect objects in motion around it.Furthermore,this study provides a comparison of various regression techniques for predicting bounding box coordinates.Gaussian process regression(GPR),combined with particle swarm optimization(PSO)for prediction,achieves the lowest prediction mean square error of all the regression techniques examined at 0.01.Hyperparameter tuning of GPR using PSO significantly minimizes the regression error.Results of the experiment pave the way for its extension to various real-time applications such as crowd management in malls,surveillance systems,and various Internet of Things scenarios.
文摘Consumption of the electric power highly depends on the Season under consideration. The various means of power generation methods using renewable resources such as sunlight, wind, rain, tides, and waves are season dependent. This paves the way for analyzing the demand for electric power based on various Seasons. Many traditional methods are utilized previously for the seasonal based electricity demand forecasting. With the development of the advanced tools, these methods are replaced by efficient forecasting techniques. In this paper, a WEKA time series forecasting is being done for the electric power demand for the three seasons such as summer, winter and rainy seasons. The monthly electric consumption data of domestic category is collected from Tamil Nadu Electricity Board (TNEB). Data collected has been pruned based on the three seasons. The WEKA learning algorithms such as Multilayer Perceptron, Support Vector Machine, Linear Regression, and Gaussian Process are used for implementation. The Mean Absolute Error (MAE) and Direction Accuracy (DA) are calculated for the WEKA learning algorithms and they are compared to find the best learning algorithm. The Support Vector Machine algorithm exhibits low Mean Absolute Error and high Direction Accuracy than other WEKA learning algorithms. Hence, the Support Vector Machine learning algorithm is proven to be the WEKA learning algorithm for seasonal based electricity demand forecasting. The need of the hour is to predict and act in the deficit power. This paper is a prelude for such activity and an eye opener in this field.
基金Supported by National Key Research and Development Project of China(Grant No.2020YFB2007700)State Key Laboratory of Tribology Initiative Research Program(Grant No.SKLT2020D21)+2 种基金National Natural Science Foundation of China(Grant No.51975309)Shaanxi Provincial Natural Science Foundation of China(Grant No.2019JQ-712)Young Talent Fund of University Association for Science and Technology in Shaanxi(Grant No.20170511).
文摘The remaining useful life(RUL)estimation of bearings is critical for ensuring the reliability of mechanical systems.Owing to the rapid development of deep learning methods,a multitude of data-driven RUL estimation approaches have been proposed recently.However,the following problems remain in existing methods:1)Most network models use raw data or statistical features as input,which renders it difficult to extract complex fault-related information hidden in signals;2)for current observations,the dependence between current states is emphasized,but their complex dependence on previous states is often disregarded;3)the output of neural networks is directly used as the estimated RUL in most studies,resulting in extremely volatile prediction results that lack robustness.Hence,a novel prognostics approach is proposed based on a time-frequency representation(TFR)subsequence,three-dimensional convolutional neural network(3DCNN),and Gaussian process regression(GPR).The approach primarily comprises two aspects:construction of a health indicator(HI)using the TFR-subsequence-3DCNN model,and RUL estimation based on the GPR model.The raw signals of the bearings are converted into TFR-subsequences by continuous wavelet transform and a dislocated overlapping strategy.Subsequently,the 3DCNN is applied to extract the hidden spatiotemporal features from the TFR-subsequences and construct HIs.Finally,the RUL of the bearings is estimated using the GPR model,which can also define the probability distribution of the potential function and prediction confidence.Experiments on the PRONOSTIA platform demonstrate the superiority of the proposed TFR-subsequence-3DCNN-GPR approach.The use of degradation-related spatiotemporal features in signals is proposed herein to achieve a highly accurate bearing RUL prediction with uncertainty quantification.