The manufacturing accuracy of ultra-precision master gears signifies the technological capability of the ultra-precision gear.Currently,there is little report about the manufacturing technologies of ultra-precision ma...The manufacturing accuracy of ultra-precision master gears signifies the technological capability of the ultra-precision gear.Currently,there is little report about the manufacturing technologies of ultra-precision master gears at home and aboard.In order to meet the requirement of grinding ultra precision master gear,the gear grinder with flat-faced wheel Y7125 is chosen as the object machine tool and the geometric model of its precision generating part,the involute cam,is established.According to the structure of the involute cam,the effective working section and its adjustable range of the cam are determined,and the mathematical expressions of the effects of comprehensive eccentricity of the involute cam on gear profile deviations are derived.According to the primary harmonic trends of the deviation curve,it is shown that gear profile form and slope deviations in different work generating sections of the involute cam are different which the latter changes with the cam eccentricity obviously.Then,the issues of extreme values and methods of error compensation are studied and the conclusion that large adjustable range is benefit to search the optimal involute-cam section which is responding to the minimum gear profile deviations is obtained.A group of examples are calculated by choosing master gears with d=120 mm and m=2-6 mm and an involute cam with base diameter djcam =117 mm.And it is found that the maximum gear profile deviation counts for no more than 5% of the cam eccentricity after error compensation.A gear-grinding experiment on the master gear with m=2 mm is conducted by choosing different sections of the involute cam and the differences of gear profile deviations then the existence of the cam eccentricity are verified.The research discloses the rule of gear profile deviations caused by the comprehensive eccentricity of the involute cam and provides the theoretical guidance and the processing methods for grinding profile of the ultra precision master gear.展开更多
With the aim to discover water, life and resources in other planets, robotic sampling instrument is a crucial part of the space exploration robot. To remove dusty and weathered surfaces and expose the fresh rock under...With the aim to discover water, life and resources in other planets, robotic sampling instrument is a crucial part of the space exploration robot. To remove dusty and weathered surfaces and expose the fresh rock underneath the planetary surface, a robotic rock grinder is considered to replace the geolo- gist’s rock hammer to carry out the geological investigation. A primary prototype of the robotic rock grinder with three degrees of freedom has been developed in this paper. Planetary transmission system is used in the grinding driving system with two inputs (rotation motor and revolution motor) and two outputs (grinding wheel and cutting brush). The grinding wheel with two teeth has been used to abrade the rock. The cutting brush is used to sweep the debris. The third actuator is to feed the grinding sys- tem. Kinematics of the grinding system has been analyzed. To get a continuous and smooth fresh face over the rock, grinding trajectory of the grinding wheel has been discussed and planned. Lastly, abra- sion experiments have been made to testify the feasibility and the basic function of this system.展开更多
基金supported by National Hi-tech Research and Development Program of China (863 Program,Grant No.2008AA042506)
文摘The manufacturing accuracy of ultra-precision master gears signifies the technological capability of the ultra-precision gear.Currently,there is little report about the manufacturing technologies of ultra-precision master gears at home and aboard.In order to meet the requirement of grinding ultra precision master gear,the gear grinder with flat-faced wheel Y7125 is chosen as the object machine tool and the geometric model of its precision generating part,the involute cam,is established.According to the structure of the involute cam,the effective working section and its adjustable range of the cam are determined,and the mathematical expressions of the effects of comprehensive eccentricity of the involute cam on gear profile deviations are derived.According to the primary harmonic trends of the deviation curve,it is shown that gear profile form and slope deviations in different work generating sections of the involute cam are different which the latter changes with the cam eccentricity obviously.Then,the issues of extreme values and methods of error compensation are studied and the conclusion that large adjustable range is benefit to search the optimal involute-cam section which is responding to the minimum gear profile deviations is obtained.A group of examples are calculated by choosing master gears with d=120 mm and m=2-6 mm and an involute cam with base diameter djcam =117 mm.And it is found that the maximum gear profile deviation counts for no more than 5% of the cam eccentricity after error compensation.A gear-grinding experiment on the master gear with m=2 mm is conducted by choosing different sections of the involute cam and the differences of gear profile deviations then the existence of the cam eccentricity are verified.The research discloses the rule of gear profile deviations caused by the comprehensive eccentricity of the involute cam and provides the theoretical guidance and the processing methods for grinding profile of the ultra precision master gear.
基金Supported by the Chinese Academy of Sciences Innovative Research Fund (Grant No. A050105) and the GUCAS-BHPB Billiton Scholarship
文摘With the aim to discover water, life and resources in other planets, robotic sampling instrument is a crucial part of the space exploration robot. To remove dusty and weathered surfaces and expose the fresh rock underneath the planetary surface, a robotic rock grinder is considered to replace the geolo- gist’s rock hammer to carry out the geological investigation. A primary prototype of the robotic rock grinder with three degrees of freedom has been developed in this paper. Planetary transmission system is used in the grinding driving system with two inputs (rotation motor and revolution motor) and two outputs (grinding wheel and cutting brush). The grinding wheel with two teeth has been used to abrade the rock. The cutting brush is used to sweep the debris. The third actuator is to feed the grinding sys- tem. Kinematics of the grinding system has been analyzed. To get a continuous and smooth fresh face over the rock, grinding trajectory of the grinding wheel has been discussed and planned. Lastly, abra- sion experiments have been made to testify the feasibility and the basic function of this system.