期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Natural Frequency of Planetary Transmission with Thin-Walled Ring Gear on Elastic Supports 被引量:2
1
作者 李剑英 胡青春 +1 位作者 柴牧 彭响方 《Journal of Donghua University(English Edition)》 EI CAS 2017年第3期333-341,共9页
A lumped parameter-rigid elastic coupled dynamic model of two-stage planetary gears for a hybrid car is established through the inter-stage coupled method,in which the supports of the ring gear of planet set Ⅱ are re... A lumped parameter-rigid elastic coupled dynamic model of two-stage planetary gears for a hybrid car is established through the inter-stage coupled method,in which the supports of the ring gear of planet set Ⅱ are represented as an elastic foundation with radial and tangential uniform distributed stiffness,and the ring gear of planet set Ⅱ is modeled as an elastic continuum body. The natural frequencies based on the eigenvalue problem of dynamic model of planetary transmission are solved and the associated vibration modes are discussed. The rules are revealed which are the influences of the ring gear elastic supports stiffness and rim thickness on natural frequencies of planetary transmission. The theoretical analysis indicates that the vibration modes of planetary transmission with thin-walled ring gear on elastic supports are classified into seven types: Ⅰ/Ⅱ stage coupled rotational mode,Ⅰ stage translational mode,Ⅰ stage planet mode,Ⅱ stage translational mode,Ⅱ stage degenerate planet mode,Ⅱ stage distinct planet mode and purely ring gear mode. For each vibration mode, its properties are summarized. The numerical solutions show that the elastic supports stiffness and rim thickness of the ring gear of planet set Ⅱ have different influences on natural frequencies. 展开更多
关键词 natural frequency elastic supports thin-walled ring gear two-stage planetary gears
下载PDF
Investigation on Mesh and Sideband Vibrations of Helical Planetary Ring Gear Using Structure, Excitation and Deformation Symmetries
2
作者 Shi-Yu Wang Chanannipat Meesap 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期55-67,共13页
Time?variant excitations in planetary gear trains can cause excessive noise and vibration and even damage the system on a permanent basis. This paper focuses on the elastic vibrations of a helical planetary ring gear ... Time?variant excitations in planetary gear trains can cause excessive noise and vibration and even damage the system on a permanent basis. This paper focuses on the elastic vibrations of a helical planetary ring gear subjected to mesh and planet?pass excitations. Motivated by the structure, excitation and deformation symmetries, this paper proposes dual?frequency superposition and modulation methods to capture the mesh and sideband vibrations. The transi?tion between ring gear tooth and planet is introduced to address the excitations and vibrations. The phasing e ect of ring gear tooth and planet on various deformations is formulated. The inherent connections between the two types of vibrations are identified. The vibrations share identical exciting rules and the wavenumber and modulating signal order both equal the linear combination of tooth and planet counts. The results cover in?plane bending and extensional, out?of?plane bending and torsional deformations. Main findings are verified by numerical calculation and comparisons with the open literature. The analytical expressions can be used to determine whether the sideband is caused by component fault or only by elastic vibration. The methods can be extended to other power?transmission systems because little restriction is imposed during the analysis. 展开更多
关键词 Helical planetary ring gear Typical vibration modes Planet phasing SIDEBAND
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部