This paper investigates the homogeneity of United States aircraft reconnaissance data and the impact of these data on the homogeneity of the tropical cyclone(TC)best track data for the seasons 1949-1987 generated by t...This paper investigates the homogeneity of United States aircraft reconnaissance data and the impact of these data on the homogeneity of the tropical cyclone(TC)best track data for the seasons 1949-1987 generated by the China Meteorological Administration(CMA).The evaluation of the reconnaissance data shows that the minimum central sea level pressure(MCP)data are relatively homogeneous,whereas the maximum sustained wind(MSW)data show both overestimations and spurious abrupt changes.Statistical comparisons suggest that both the reconnaissance MCP and MSW were well incorporated into the CMA TC best track dataset.Although no spurious abrupt changes were evident in the reconnaissance-related best track MCP data,two spurious changepoints were identified in the remainder of the best-track MCP data.Furthermore,the influence of the reconnaissance MSWs seems to extend to the best track MSWs unrelated to reconnaissance,which might reflect the optimistic confidence in making higher estimates due to the overestimated extreme wind“observations”.In addition,the overestimation of either the reconnaissance MSWs or the best track MSWs was greater during the early decades compared to later decades,which reflects the important influence of reconnaissance data on the CMA TC best track dataset.The wind-pressure relationship(WPR)used in the CMA TC best track dataset is also evaluated and is found to overestimate the MSW,which may lead to inhomogeneity within the dataset between the aircraft reconnaissance era and the satellite era.展开更多
Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of ...Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of the pump.Research on pump cavitation mainly focuses on mixed flow pumps,jet pumps,external spur gear pumps,etc.However,there are few cavitation studies on external herringbone gear pumps.In addition,pumps with different working principles significantly differ in the flow and complexity of the internal flow field.Therefore,it is urgent to study the cavitation characteristics of external herringbone gear pumps.Compared with experimentalmethods,visual research and cavitation area identification are achieved through computation fluid dynamic(CFD),and changing the boundary conditions and shape of the gear rotor is easier.The simulation yields a head error of only 0.003%under different grid numbers,and the deviation between experimental and simulation results is less than 5%.The study revealed that cavitation causes flow pulsation at the outlet,and the cavitation serious area is mainly distributed in the meshing gap and meshing area.Cavitation can be inhibited by reducing the speed,increasing the inlet pressure,and changing the helix angle can be achieved.For example,when the inlet pressure is 5 bar,the maximumgas volume fraction in themeshing area is less than 50%.These results provide a reference for optimizing the design and finding the optimal design parameters to reduce or eliminate cavitation.展开更多
We have previously evaluated asbestos exposure associated with various maintenance procedures on light aircraft. The purpose of this study was to evaluate asbestos exposure during engine maintenance on light aircraft....We have previously evaluated asbestos exposure associated with various maintenance procedures on light aircraft. The purpose of this study was to evaluate asbestos exposure during engine maintenance on light aircraft. This test was designed to evaluate the potential for asbestos exposure to mechanics and others who remove asbestos-containing engine gaskets from reciprocating style aircraft engines. Utilized in this test was an air cooled, horizontally opposed, aviation gasoline burning engine, assembled during 1986 and operated intermittently up into 2015, having accumulated 1680 hours run time. Nearly 75% of the asbestos-containing gaskets installed during 1986 were still in place at the time of testing. Chrysotile asbestos contents of such gaskets ranged from 55% to 60% by area, for those of sheet style and 5% by area, for the spiral wound metal/asbestos style. Despite the levels of effort required to effect gasket removals, the professional aircraft mechanic was not exposed to airborne asbestos fibers at the lower limits of sampling and analytical detection achieved;all of which were substantially less than the current Occupational Safety and Health Administration Permissible Exposure Limits for asbestos. The results of this testing indicate an absence of gasket related asbestos exposure risk to mechanics who work with light aircraft engines, including those having asbestos-containing gaskets. These results are consistent with the findings of Mlyarek and Van Orden who studied the asbestos exposure risk occasioned during overhaul of larger radial style reciprocating aircraft engines [1].展开更多
Gears are pivotal in mechanical drives,and gear contact analysis is a typically difficult problem to solve.Emerging isogeometric analysis(IGA)methods have developed new ideas to solve this problem.In this paper,a thre...Gears are pivotal in mechanical drives,and gear contact analysis is a typically difficult problem to solve.Emerging isogeometric analysis(IGA)methods have developed new ideas to solve this problem.In this paper,a threedimensional body parametric gear model of IGA is established,and a theoretical formula is derived to realize single-tooth contact analysis.Results were benchmarked against those obtained from commercial software utilizing the finite element analysis(FEA)method to validate the accuracy of our approach.Our findings indicate that the IGA-based contact algorithmsuccessfullymet theHertz contact test.When juxtaposed with the FEA approach,the IGAmethod demonstrated fewer node degrees of freedomand reduced computational units,all whilemaintaining comparable accuracy.Notably,the IGA method appeared to exhibit consistency in analysis accuracy irrespective of computational unit density,and also significantlymitigated non-physical oscillations in contact stress across the tooth width.This underscores the prowess of IGA in contact analysis.In conclusion,IGA emerges as a potent tool for addressing contact analysis challenges and holds significant promise for 3D gear modeling,simulation,and optimization of various mechanical components.展开更多
Although there is currently no unified standard theoretical formula for calculating the contact stress of cylindrical gears with a circular arc tooth trace(referred to as CATT gear),a mathematical model for determinin...Although there is currently no unified standard theoretical formula for calculating the contact stress of cylindrical gears with a circular arc tooth trace(referred to as CATT gear),a mathematical model for determining the contact stress of CATT gear is essential for studying how parameters affect its contact stress and building the contact stress limit state equation for contact stress reliability analysis.In this study,a mathematical relationship between design parameters and contact stress is formulated using the KrigingMetamodel.To enhance the model’s accuracy,we propose a new hybrid algorithm that merges the genetic algorithm with the Quantum Particle Swarm optimization algorithm,leveraging the strengths of each.Additionally,the“parental inheritance+self-learning”optimization model is used to fine-tune the KrigingMetamodel’s parameters.Following this,amathematicalmodel for calculating the contact stress of Variable Hyperbolic Circular-Arc-Tooth-Trace(VH-CATT)gears using the optimized Kriging model was developed.We then examined how different gear parameters affect the VH-CATT gears’contact stress.Our simulation results show:(1)Improvements in R2,RMSE,and RMAE.R2 rose from0.9852 to 0.9974(a 1.22%increase),nearing 1,suggesting the optimized Kriging Metamodel’s global error is minimized.Meanwhile,RMSE dropped from3.9210 to 1.6492,a decline of 57.94%.The global error of the GA-IQPSO-Kriging algorithm was also reduced,with RMAE decreasing by 58.69%from 0.1823 to 0.0753,showing the algorithm’s enhanced precision.In a comparison of ten experimental groups selected randomly,the GA-IQPSO-Kriging and FEM-based contact analysis methods were used to measure contact stress.Results revealed a maximum error of 12.11667 MPA,which represents 2.85%of the real value.(2)Several factors,including the pressure angle,tooth width,modulus,and tooth line radius,are inversely related to contact stress.The descending order of their impact on the contact stress is:tooth line radius>modulus>pressure angle>tooth width.(3)Complex interactions are noted among various parameters.Specifically,when the tooth line radius interacts with parameters such as pressure angle,tooth width,and modulus,the resulting stress contour is nonlinear,showcasing amultifaceted contour plane.However,when tooth width,modulus,and pressure angle interact,the stress contour is nearly linear,and the contour plane is simpler,indicating a weaker coupling among these factors.展开更多
Shimmy can reduce the service life of the nose landing gear, affect ride comfort, and even cause fuselage damage leading to aircraft crashes. Taking a light aircraft as the research object, the torsional freedom of la...Shimmy can reduce the service life of the nose landing gear, affect ride comfort, and even cause fuselage damage leading to aircraft crashes. Taking a light aircraft as the research object, the torsional freedom of landing gear around strut axis and lateral deformation of tire are considered. Since the landing gear shimmy is a nonlinear system, a nonlinear mechanical model of the front landing gear shimmy is established. Sobol index method is proposed to analyze the influence of structural parameters on the stability region of the nose landing gear, and Routh-Huritz criterion is used to verify the reliability of the analysis results of Sobol index method. We analyse the effect of torsional stiffness of strut, caster length, rated initial tire inflation pressure, rake angle, and vertical force on the stability region of theront landing gear. And the research shows that the optimization of the torsional stiffness of the strut and the caster length of the nose landing gear should be emphasized, and the influence of vertical force on the stability region of the nose landing gear should be paid attention to.展开更多
For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of...For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of the quad tilt rotor aircraft. Firstly, a numerical simulation method for the interference flow field of the quad tilt rotor aircraft is established. Based on this method, the aerodynamic characteristics of isolated rotors, rotor combinations at different lateral positions on the wing, and rotor rotation directions under different inflow velocities were calculated and analyzed, in order to grasp their aerodynamic interference laws and provide reference for the design and control theory research of such aircraft.展开更多
Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation...Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.展开更多
The architecture and working principle of coordinated search and rescue system of unmanned/manned aircraft,which is composed of manned/unmanned aircraft and manned aircraft,were first introduced,and they can cooperate...The architecture and working principle of coordinated search and rescue system of unmanned/manned aircraft,which is composed of manned/unmanned aircraft and manned aircraft,were first introduced,and they can cooperate with each other to complete a search and rescue task.Secondly,a threat assessment method based on meteorological data was proposed,and potential meteorological threats,such as storms and rainfall,can be predicted by collecting and analyzing meteorological data.Finally,an experiment was carried out to evaluate the performance of the proposed method in different scenarios.The experimental results show that the coordinated search and rescue system of unmanned/manned aircraft can be used to effectively assess meteorological threats and provide accurate search and rescue guidance.展开更多
Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relat...Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relationship and positional relationship between the caries knife and the workpiece,the coordinate system of the caries machining was established.With the MATLAB software,the cutting edge model and the blade sweeping surface model of the boring cutter are sequentially established.Boolean operation is performed on the blade swept surface formed by the tooth cutter teeth with time t and the workpiece tooth geometry as well as the undeformed three-dimensional chip geometry model and the instantaneous cogging geometry model are obtained at different times.Through the compare between gear end face simulation tooth profile and the theoretical inner arc tooth profile,we verified the accuracy and rationality of the proposed method.展开更多
Optimization of the parameters of landing gear systems with double-stage air springs of catapult take-off carrier-based aircraft is here studied based on the mathematical equations of the classic dual mass spring-damp...Optimization of the parameters of landing gear systems with double-stage air springs of catapult take-off carrier-based aircraft is here studied based on the mathematical equations of the classic dual mass spring-damper dynamic model.Certain standards for both take-off and landing performance are put forward.The contradictory factors between take-off and landing processes are analyzed.The optimization of oil in the pin area and the area near the rear oil hole is performed.Then these optimized parameters are used to assess the influence of the initial pressure of the low chamber,the ratio of the high chamber to the low chamber,and the tire inflation pressure on the performance of arresting landing and catapult take-off.The influences of these parameters on carrier-based aircraft and the aircraft-carrier on aircraft catapult take-off is also assessed.Based on the results of the simulation,respective take-off criteria must be drafted considering different types of aircraft and different take-off load cases,all of which must be matched to parameters relevant to catapult take-off.展开更多
This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sli...This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sliding mode control is applied to the vibration control of a simplified landing gear model with uncertainty. A two-stage generalized cell mapping algorithm is applied to search the Pareto set with gradient-free scheme. Drop test simulations over uneven runway show that the vibration and force interaction can be considerably reduced, and the Pareto optimum form a tight range in time domain.展开更多
In asymmetric conditions,the movement and loads of left/right wheels or front/back wheels of the aircraft with multi-wheel or four-wheel bogie landing gears are inconsistent.There are few open literatures related to a...In asymmetric conditions,the movement and loads of left/right wheels or front/back wheels of the aircraft with multi-wheel or four-wheel bogie landing gears are inconsistent.There are few open literatures related to anti-skid braking system for multi-wheels due to technology blockade.In China,the research on multi-channel control and non-equilibrium regulation has just started,and the design of multi-channel control system for anti-skid braking,the simulation of asymmetry taxiing under braking are not studied.In this paper,a dynamics model of ground movement for aircraft with four-wheel bogie landing gears is established for braking simulation, considering the six-degree-of-freedom aircraft body and the movement of bogies and wheels.A multi-channel anti-skid braking system is designed for the wheels of the main landing gears with four-wheel bogies.The eight wheels on left and right landing gears are divided into four groups,and each group is controlled via one channel.The cross protection and self-locked protection modules are added between different channels.A multi-channel anti-skid braking system with slip-ratio control or with slip-velocity control is established separately.Based on the aircraft dynamics model,aircraft braking to stop with anti-skid control on dry runway and on wet runway are simulated.The simulation results demonstrate that in asymmetric conditions,added with cross protection and self-locked protection modules,the slip-ratio-controlled braking system can automatically regulate brake torque to avoid deep slipping and correct aircraft course.The proposed research has reference value for improving brake control effect on wet runway.展开更多
Through taking uncertain mechanical parameters of composites into consideration,this paper carries out uncertain modal analysis for an unmanned aircraft landing gear.By describing correlated multi-dimensional mechanic...Through taking uncertain mechanical parameters of composites into consideration,this paper carries out uncertain modal analysis for an unmanned aircraft landing gear.By describing correlated multi-dimensional mechanical parameters as a convex polyhedral model,the modal analysis problem of a composite landing gear is transferred into a linear fractional programming(LFR)eigenvalue solution problem.As a consequent,the extreme-point algorithm is proposed to estimate lower and upper bounds of eigenvalues,namely the exact results of eigenvalues can be easily obtained at the extreme-point locations of the convex polyhedral model.The simulation results show that the proposed model and algorithm can play an important role in the eigenvalue solution problem and possess valuable engineering significance.It will be a powerful and effective tool for further vibration analysis for the landing gear.展开更多
As all-electric aircraft has many advantages,an aircraft nose wheel steering system would be developed to the all-electric direction.Concerning the control demand of the nose wheel steering system,based on the basic p...As all-electric aircraft has many advantages,an aircraft nose wheel steering system would be developed to the all-electric direction.Concerning the control demand of the nose wheel steering system,based on the basic principles of nose wheel steering system and the design technique of mechanotronics,an all-electric aircraft nose wheel steering system,composed of a nose wheel steering mechanism of two worm gear and a control servo system of fly-by-wire with both steering and anti-shimmy functions is designed to meet the demand for operation control in the nose wheel steering system.Then,based on the LMS-AMESim software,the simulation model of the system is established to simulate the dynamics for the verification of its steering function.The simulation results indicate that the nose wheel steering system is reasonable,and can meet the requirements of the general project.Furthermore,the prototypes of the steering mechanism and control system are studied to validate the design,and the steering test bench is prepared to test the designed system.The test results,such as steer angle,rotate speed of motor are analyzed in details and compared with the theoretical results.The analysis and comparison results show that the design is reasonable and the property of the prototype can achieve the design objectives.展开更多
A simple but realistic method for identifying nonlinear stiffness and damp-ing of an air-oil shock strut widely used in aircraft is developed.In the method a powerseries expansion is used to niodel the nonlinear dynam...A simple but realistic method for identifying nonlinear stiffness and damp-ing of an air-oil shock strut widely used in aircraft is developed.In the method a powerseries expansion is used to niodel the nonlinear dynamic properties of the strut. and after introducing new variables lhe nonlinear identitication problem can be reduced to alinear one with unknown linear paranieters. An unbiased, efficient and consistentestimator for the vector of the linear parameters is obtained under conditions of mini-mizing the sum of squared residuals which is assumed to be stationary and uncorrelatedwith the observed data.The order and the most effective independent variables in themodel are detennined by the criterion of residual series correlation infonnation entropyand the procedure of best subset regression, respectively. Experiinent demonstrates thatthe results are quite satisfactory, and the method developed is realistic, which can beused to study the dynamic properties of a strut in full detail.展开更多
The weapon transportation support scheduling problem on aircraft carrier deck is the key to restricting the sortie rate and combat capability of carrier-based aircraft.This paper studies the problem and presents a nov...The weapon transportation support scheduling problem on aircraft carrier deck is the key to restricting the sortie rate and combat capability of carrier-based aircraft.This paper studies the problem and presents a novel solution architecture.Taking the interference of the carrier-based aircraft deck layout on the weapon transportation route and precedence constraint into consideration,a mixed integer formulation is established to minimize the total objective,which is constituted of makespan,load variance and accumulative transfer time of support unit.Solution approach is developed for the model.Firstly,based on modeling the carrier aircraft parked on deck as convex obstacles,the path library of weapon transportation is constructed through visibility graph and Warshall-Floyd methods.We then propose a bi-population immune algorithm in which a population-based forward/backward scheduling technique,local search schemes and a chaotic catastrophe operator are embedded.Besides,the randomkey solution representation and serial scheduling generation scheme are adopted to conveniently obtain a better solution.The Taguchi method is additionally employed to determine key parameters of the algorithm.Finally,on a set of generated realistic instances,we demonstrate that the proposed algorithm outperforms all compared algorithms designed for similar optimization problems and can significantly improve the efficiency,and that the established model and the bi-population immune algorithm can effectively respond to the weapon support requirements of carrier-based aircraft under different sortie missions.展开更多
A dynamic model of landing gear struts is introduced in a non-inertial coordinate system. Together with a six degrees of freedom model of aircraft ground handling, the model can be applied to investigate the landing g...A dynamic model of landing gear struts is introduced in a non-inertial coordinate system. Together with a six degrees of freedom model of aircraft ground handling, the model can be applied to investigate the landing gear shimmy and the directional stability of aircraft undergoing non-straight taxiing. Take the K8 aircraft as an example, motions of the strut under both the straight and non-straight taxiing are simulated as well as the directional adjusting procedure of the airframe. Results of the example are reasonable, indicating that the model may have some value in related research.展开更多
文摘This paper investigates the homogeneity of United States aircraft reconnaissance data and the impact of these data on the homogeneity of the tropical cyclone(TC)best track data for the seasons 1949-1987 generated by the China Meteorological Administration(CMA).The evaluation of the reconnaissance data shows that the minimum central sea level pressure(MCP)data are relatively homogeneous,whereas the maximum sustained wind(MSW)data show both overestimations and spurious abrupt changes.Statistical comparisons suggest that both the reconnaissance MCP and MSW were well incorporated into the CMA TC best track dataset.Although no spurious abrupt changes were evident in the reconnaissance-related best track MCP data,two spurious changepoints were identified in the remainder of the best-track MCP data.Furthermore,the influence of the reconnaissance MSWs seems to extend to the best track MSWs unrelated to reconnaissance,which might reflect the optimistic confidence in making higher estimates due to the overestimated extreme wind“observations”.In addition,the overestimation of either the reconnaissance MSWs or the best track MSWs was greater during the early decades compared to later decades,which reflects the important influence of reconnaissance data on the CMA TC best track dataset.The wind-pressure relationship(WPR)used in the CMA TC best track dataset is also evaluated and is found to overestimate the MSW,which may lead to inhomogeneity within the dataset between the aircraft reconnaissance era and the satellite era.
基金supported by a Grant(2024-MOIS35-005)of Policy-linked Technology Development Program on Natural Disaster Prevention and Mitigation funded by Ministry of Interior and Safety(MOIS,Korea).
文摘Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of the pump.Research on pump cavitation mainly focuses on mixed flow pumps,jet pumps,external spur gear pumps,etc.However,there are few cavitation studies on external herringbone gear pumps.In addition,pumps with different working principles significantly differ in the flow and complexity of the internal flow field.Therefore,it is urgent to study the cavitation characteristics of external herringbone gear pumps.Compared with experimentalmethods,visual research and cavitation area identification are achieved through computation fluid dynamic(CFD),and changing the boundary conditions and shape of the gear rotor is easier.The simulation yields a head error of only 0.003%under different grid numbers,and the deviation between experimental and simulation results is less than 5%.The study revealed that cavitation causes flow pulsation at the outlet,and the cavitation serious area is mainly distributed in the meshing gap and meshing area.Cavitation can be inhibited by reducing the speed,increasing the inlet pressure,and changing the helix angle can be achieved.For example,when the inlet pressure is 5 bar,the maximumgas volume fraction in themeshing area is less than 50%.These results provide a reference for optimizing the design and finding the optimal design parameters to reduce or eliminate cavitation.
文摘We have previously evaluated asbestos exposure associated with various maintenance procedures on light aircraft. The purpose of this study was to evaluate asbestos exposure during engine maintenance on light aircraft. This test was designed to evaluate the potential for asbestos exposure to mechanics and others who remove asbestos-containing engine gaskets from reciprocating style aircraft engines. Utilized in this test was an air cooled, horizontally opposed, aviation gasoline burning engine, assembled during 1986 and operated intermittently up into 2015, having accumulated 1680 hours run time. Nearly 75% of the asbestos-containing gaskets installed during 1986 were still in place at the time of testing. Chrysotile asbestos contents of such gaskets ranged from 55% to 60% by area, for those of sheet style and 5% by area, for the spiral wound metal/asbestos style. Despite the levels of effort required to effect gasket removals, the professional aircraft mechanic was not exposed to airborne asbestos fibers at the lower limits of sampling and analytical detection achieved;all of which were substantially less than the current Occupational Safety and Health Administration Permissible Exposure Limits for asbestos. The results of this testing indicate an absence of gasket related asbestos exposure risk to mechanics who work with light aircraft engines, including those having asbestos-containing gaskets. These results are consistent with the findings of Mlyarek and Van Orden who studied the asbestos exposure risk occasioned during overhaul of larger radial style reciprocating aircraft engines [1].
基金support provided by the National Nature Science Foundation of China (Grant Nos.52075340,51875360)Project of Science and Technology Commission of Shanghai Municipality (No.19060502300).
文摘Gears are pivotal in mechanical drives,and gear contact analysis is a typically difficult problem to solve.Emerging isogeometric analysis(IGA)methods have developed new ideas to solve this problem.In this paper,a threedimensional body parametric gear model of IGA is established,and a theoretical formula is derived to realize single-tooth contact analysis.Results were benchmarked against those obtained from commercial software utilizing the finite element analysis(FEA)method to validate the accuracy of our approach.Our findings indicate that the IGA-based contact algorithmsuccessfullymet theHertz contact test.When juxtaposed with the FEA approach,the IGAmethod demonstrated fewer node degrees of freedomand reduced computational units,all whilemaintaining comparable accuracy.Notably,the IGA method appeared to exhibit consistency in analysis accuracy irrespective of computational unit density,and also significantlymitigated non-physical oscillations in contact stress across the tooth width.This underscores the prowess of IGA in contact analysis.In conclusion,IGA emerges as a potent tool for addressing contact analysis challenges and holds significant promise for 3D gear modeling,simulation,and optimization of various mechanical components.
基金supported by the National Natural Science Foundation of China(Project No.51875370)the Natural Science Foundation of Sichuan Province(Project Nos.2022NSFSC0454,2022NSFSC1975)+2 种基金Sichuan Science and Technology Program(Project No.2023ZYD0139)the University Key Laboratory of Sichuan in Process Equipment and Control Engineering(No.GK201905)Key Laboratory of Fluid and Power Machinery,Ministry of Education(No.LTDL2020-006).
文摘Although there is currently no unified standard theoretical formula for calculating the contact stress of cylindrical gears with a circular arc tooth trace(referred to as CATT gear),a mathematical model for determining the contact stress of CATT gear is essential for studying how parameters affect its contact stress and building the contact stress limit state equation for contact stress reliability analysis.In this study,a mathematical relationship between design parameters and contact stress is formulated using the KrigingMetamodel.To enhance the model’s accuracy,we propose a new hybrid algorithm that merges the genetic algorithm with the Quantum Particle Swarm optimization algorithm,leveraging the strengths of each.Additionally,the“parental inheritance+self-learning”optimization model is used to fine-tune the KrigingMetamodel’s parameters.Following this,amathematicalmodel for calculating the contact stress of Variable Hyperbolic Circular-Arc-Tooth-Trace(VH-CATT)gears using the optimized Kriging model was developed.We then examined how different gear parameters affect the VH-CATT gears’contact stress.Our simulation results show:(1)Improvements in R2,RMSE,and RMAE.R2 rose from0.9852 to 0.9974(a 1.22%increase),nearing 1,suggesting the optimized Kriging Metamodel’s global error is minimized.Meanwhile,RMSE dropped from3.9210 to 1.6492,a decline of 57.94%.The global error of the GA-IQPSO-Kriging algorithm was also reduced,with RMAE decreasing by 58.69%from 0.1823 to 0.0753,showing the algorithm’s enhanced precision.In a comparison of ten experimental groups selected randomly,the GA-IQPSO-Kriging and FEM-based contact analysis methods were used to measure contact stress.Results revealed a maximum error of 12.11667 MPA,which represents 2.85%of the real value.(2)Several factors,including the pressure angle,tooth width,modulus,and tooth line radius,are inversely related to contact stress.The descending order of their impact on the contact stress is:tooth line radius>modulus>pressure angle>tooth width.(3)Complex interactions are noted among various parameters.Specifically,when the tooth line radius interacts with parameters such as pressure angle,tooth width,and modulus,the resulting stress contour is nonlinear,showcasing amultifaceted contour plane.However,when tooth width,modulus,and pressure angle interact,the stress contour is nearly linear,and the contour plane is simpler,indicating a weaker coupling among these factors.
文摘Shimmy can reduce the service life of the nose landing gear, affect ride comfort, and even cause fuselage damage leading to aircraft crashes. Taking a light aircraft as the research object, the torsional freedom of landing gear around strut axis and lateral deformation of tire are considered. Since the landing gear shimmy is a nonlinear system, a nonlinear mechanical model of the front landing gear shimmy is established. Sobol index method is proposed to analyze the influence of structural parameters on the stability region of the nose landing gear, and Routh-Huritz criterion is used to verify the reliability of the analysis results of Sobol index method. We analyse the effect of torsional stiffness of strut, caster length, rated initial tire inflation pressure, rake angle, and vertical force on the stability region of theront landing gear. And the research shows that the optimization of the torsional stiffness of the strut and the caster length of the nose landing gear should be emphasized, and the influence of vertical force on the stability region of the nose landing gear should be paid attention to.
文摘For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of the quad tilt rotor aircraft. Firstly, a numerical simulation method for the interference flow field of the quad tilt rotor aircraft is established. Based on this method, the aerodynamic characteristics of isolated rotors, rotor combinations at different lateral positions on the wing, and rotor rotation directions under different inflow velocities were calculated and analyzed, in order to grasp their aerodynamic interference laws and provide reference for the design and control theory research of such aircraft.
文摘Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.
基金the Study on the Impact of the Construction and Development of Southwest Plateau Airport on the Ecological Environment(CZKY2023032).
文摘The architecture and working principle of coordinated search and rescue system of unmanned/manned aircraft,which is composed of manned/unmanned aircraft and manned aircraft,were first introduced,and they can cooperate with each other to complete a search and rescue task.Secondly,a threat assessment method based on meteorological data was proposed,and potential meteorological threats,such as storms and rainfall,can be predicted by collecting and analyzing meteorological data.Finally,an experiment was carried out to evaluate the performance of the proposed method in different scenarios.The experimental results show that the coordinated search and rescue system of unmanned/manned aircraft can be used to effectively assess meteorological threats and provide accurate search and rescue guidance.
基金The National Natural Science Foundation of China (No.52165060,12272189)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region: (NJYT23022)+2 种基金Science and Technology Projects of Inner Mongolia Autonomous Region: (2021GG0432)Central Guiding Local Science and Technology Development Plan (2022ZY0013)Basic research business fee project for universities directly under Inner Mongolia Autonomous Region (GXKY22046).
文摘Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relationship and positional relationship between the caries knife and the workpiece,the coordinate system of the caries machining was established.With the MATLAB software,the cutting edge model and the blade sweeping surface model of the boring cutter are sequentially established.Boolean operation is performed on the blade swept surface formed by the tooth cutter teeth with time t and the workpiece tooth geometry as well as the undeformed three-dimensional chip geometry model and the instantaneous cogging geometry model are obtained at different times.Through the compare between gear end face simulation tooth profile and the theoretical inner arc tooth profile,we verified the accuracy and rationality of the proposed method.
基金supported by the National Natural Science Foundation of China(Nos.5130519811372129)
文摘Optimization of the parameters of landing gear systems with double-stage air springs of catapult take-off carrier-based aircraft is here studied based on the mathematical equations of the classic dual mass spring-damper dynamic model.Certain standards for both take-off and landing performance are put forward.The contradictory factors between take-off and landing processes are analyzed.The optimization of oil in the pin area and the area near the rear oil hole is performed.Then these optimized parameters are used to assess the influence of the initial pressure of the low chamber,the ratio of the high chamber to the low chamber,and the tire inflation pressure on the performance of arresting landing and catapult take-off.The influences of these parameters on carrier-based aircraft and the aircraft-carrier on aircraft catapult take-off is also assessed.Based on the results of the simulation,respective take-off criteria must be drafted considering different types of aircraft and different take-off load cases,all of which must be matched to parameters relevant to catapult take-off.
基金Supported by the National Natural Science Foundation of China(No.11172197 and No.11332008)a key-project grant from the Natural Science Foundation of Tianjin(No.010413595)
文摘This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sliding mode control is applied to the vibration control of a simplified landing gear model with uncertainty. A two-stage generalized cell mapping algorithm is applied to search the Pareto set with gradient-free scheme. Drop test simulations over uneven runway show that the vibration and force interaction can be considerably reduced, and the Pareto optimum form a tight range in time domain.
基金supported by National Natural Science Foundation of China (Grant No.51075203)Nanjing University of Aeronautics and Astronautics Research Funding(Grant No.NS2010033)
文摘In asymmetric conditions,the movement and loads of left/right wheels or front/back wheels of the aircraft with multi-wheel or four-wheel bogie landing gears are inconsistent.There are few open literatures related to anti-skid braking system for multi-wheels due to technology blockade.In China,the research on multi-channel control and non-equilibrium regulation has just started,and the design of multi-channel control system for anti-skid braking,the simulation of asymmetry taxiing under braking are not studied.In this paper,a dynamics model of ground movement for aircraft with four-wheel bogie landing gears is established for braking simulation, considering the six-degree-of-freedom aircraft body and the movement of bogies and wheels.A multi-channel anti-skid braking system is designed for the wheels of the main landing gears with four-wheel bogies.The eight wheels on left and right landing gears are divided into four groups,and each group is controlled via one channel.The cross protection and self-locked protection modules are added between different channels.A multi-channel anti-skid braking system with slip-ratio control or with slip-velocity control is established separately.Based on the aircraft dynamics model,aircraft braking to stop with anti-skid control on dry runway and on wet runway are simulated.The simulation results demonstrate that in asymmetric conditions,added with cross protection and self-locked protection modules,the slip-ratio-controlled braking system can automatically regulate brake torque to avoid deep slipping and correct aircraft course.The proposed research has reference value for improving brake control effect on wet runway.
基金supported by the National Nature Science Foundation of China(No.51805503)the Beijing Natural Science Foundation(No.3202035)。
文摘Through taking uncertain mechanical parameters of composites into consideration,this paper carries out uncertain modal analysis for an unmanned aircraft landing gear.By describing correlated multi-dimensional mechanical parameters as a convex polyhedral model,the modal analysis problem of a composite landing gear is transferred into a linear fractional programming(LFR)eigenvalue solution problem.As a consequent,the extreme-point algorithm is proposed to estimate lower and upper bounds of eigenvalues,namely the exact results of eigenvalues can be easily obtained at the extreme-point locations of the convex polyhedral model.The simulation results show that the proposed model and algorithm can play an important role in the eigenvalue solution problem and possess valuable engineering significance.It will be a powerful and effective tool for further vibration analysis for the landing gear.
基金supported partly by the Aeronautical Science Foundation of China(No.20142852025)
文摘As all-electric aircraft has many advantages,an aircraft nose wheel steering system would be developed to the all-electric direction.Concerning the control demand of the nose wheel steering system,based on the basic principles of nose wheel steering system and the design technique of mechanotronics,an all-electric aircraft nose wheel steering system,composed of a nose wheel steering mechanism of two worm gear and a control servo system of fly-by-wire with both steering and anti-shimmy functions is designed to meet the demand for operation control in the nose wheel steering system.Then,based on the LMS-AMESim software,the simulation model of the system is established to simulate the dynamics for the verification of its steering function.The simulation results indicate that the nose wheel steering system is reasonable,and can meet the requirements of the general project.Furthermore,the prototypes of the steering mechanism and control system are studied to validate the design,and the steering test bench is prepared to test the designed system.The test results,such as steer angle,rotate speed of motor are analyzed in details and compared with the theoretical results.The analysis and comparison results show that the design is reasonable and the property of the prototype can achieve the design objectives.
文摘A simple but realistic method for identifying nonlinear stiffness and damp-ing of an air-oil shock strut widely used in aircraft is developed.In the method a powerseries expansion is used to niodel the nonlinear dynamic properties of the strut. and after introducing new variables lhe nonlinear identitication problem can be reduced to alinear one with unknown linear paranieters. An unbiased, efficient and consistentestimator for the vector of the linear parameters is obtained under conditions of mini-mizing the sum of squared residuals which is assumed to be stationary and uncorrelatedwith the observed data.The order and the most effective independent variables in themodel are detennined by the criterion of residual series correlation infonnation entropyand the procedure of best subset regression, respectively. Experiinent demonstrates thatthe results are quite satisfactory, and the method developed is realistic, which can beused to study the dynamic properties of a strut in full detail.
基金the financial support of the National Natural Science Foundation of China(No.52102453)。
文摘The weapon transportation support scheduling problem on aircraft carrier deck is the key to restricting the sortie rate and combat capability of carrier-based aircraft.This paper studies the problem and presents a novel solution architecture.Taking the interference of the carrier-based aircraft deck layout on the weapon transportation route and precedence constraint into consideration,a mixed integer formulation is established to minimize the total objective,which is constituted of makespan,load variance and accumulative transfer time of support unit.Solution approach is developed for the model.Firstly,based on modeling the carrier aircraft parked on deck as convex obstacles,the path library of weapon transportation is constructed through visibility graph and Warshall-Floyd methods.We then propose a bi-population immune algorithm in which a population-based forward/backward scheduling technique,local search schemes and a chaotic catastrophe operator are embedded.Besides,the randomkey solution representation and serial scheduling generation scheme are adopted to conveniently obtain a better solution.The Taguchi method is additionally employed to determine key parameters of the algorithm.Finally,on a set of generated realistic instances,we demonstrate that the proposed algorithm outperforms all compared algorithms designed for similar optimization problems and can significantly improve the efficiency,and that the established model and the bi-population immune algorithm can effectively respond to the weapon support requirements of carrier-based aircraft under different sortie missions.
文摘A dynamic model of landing gear struts is introduced in a non-inertial coordinate system. Together with a six degrees of freedom model of aircraft ground handling, the model can be applied to investigate the landing gear shimmy and the directional stability of aircraft undergoing non-straight taxiing. Take the K8 aircraft as an example, motions of the strut under both the straight and non-straight taxiing are simulated as well as the directional adjusting procedure of the airframe. Results of the example are reasonable, indicating that the model may have some value in related research.