The plastic gear is widely used in agricultural equipment,electronic products,aircraft,and other fields because of its light weight,corrosion resistance,and self-lubrication ability.However,it has a limited range of w...The plastic gear is widely used in agricultural equipment,electronic products,aircraft,and other fields because of its light weight,corrosion resistance,and self-lubrication ability.However,it has a limited range of working conditions due to the low modulus and thermal deformation of the material,especially in high-speed and heavy-duty situations.A compensation modification method(CMM)is proposed in this paper to restrain the heat production of the plastic gear tooth surface by considering the meshing deformation,and the corresponding modification formulas are derived.Improving the position of the maximum contact pressure(CP)and the relative sliding velocity(RSV)of the tooth surface resulted in a 30%lower steady-state temperature rise of the modified plastic gear tooth surface than that of the unmodified plastic gear.Meanwhile,the temperature rise of plastic gear with CMM is reduced by 19%compared with the traditional modification of removal material.Then,the influences of modification index and the segment number of modification on the meshing characteristics of plastic gear with CMM are discussed,such as maximum CP and steadystate temperature rise,RSV,transmission error,meshing angle,and contact ratio.A smaller segment number and modification index are beneficial to reduce the temperature rise of plastic gear with CMM.Finally,an experiment is carried out to verify the theoretical analysis model.展开更多
Tooth profile shift will change the thickness of gear teeth and a part of geometrical parameters of a gear pair, thus influencing its mesh stiffness and consequently the dynamic performances. In this paper, an analyti...Tooth profile shift will change the thickness of gear teeth and a part of geometrical parameters of a gear pair, thus influencing its mesh stiffness and consequently the dynamic performances. In this paper, an analytical mesh stiffness calculation model for an internal gear pair in mesh considering the tooth profile shift is developed based on the potential energy principle. Geometrical representations of the tooth profile shift are firstly derived, and then fitted into the analytical tooth stiffness model of gears. This model could supply a convenient way for mesh stiffness calculation of profile shifted spur gears. Then, simulation studies are conducted based on the developed model to demonstrate the effects of tooth profile shift coefficient on the tooth compliances and the mesh stiffness of the internal spur gear pair. The results show that tooth profile shift has an obvious influence on the mean value, amplitude variation and phase of the mesh stiffness, from which it can be predicted that the dynamic response of an internal gear transmission system will be affected by the tooth profile shift.展开更多
Planetary gear trains are widely applied in various transmission units.Whether strengths of all gears are accurately calculated or not can affect reliability of the entire system significantly.Strength calculation met...Planetary gear trains are widely applied in various transmission units.Whether strengths of all gears are accurately calculated or not can affect reliability of the entire system significantly.Strength calculation method for planetary gear trains usually follows the method for cylindrical gears,in which the worst meshing positions for both contact stress and bending stress cannot be determined precisely,and calculation results tend to be conservative.To overcome these shortcomings,a kinematics analysis for a planetary gear train is firstly performed,in which the influence of relative speed is investigated.Then the finite element strength analysis of a planetary gear train based on its transient meshing properties is carried out in ANSYS.Time–history curves of contact and bending stresses of sun gear,planetary gears and ring gear are respectively obtained.Also the accurate moment and its corresponding position of the maximum stress are precisely determined.Finally,calculation results of finite element method(FEM)and traditional method are compared in order to verify the effectiveness.Simulation and comparison show the stability of the proposed method in this paper.Researches in this paper establish the foundations for fatigue analysis and optimization for a planetary gear train.展开更多
For the design of gears manufactured with wire electrical discharge machining (WEDM) technology, determination of the primary gear parameters is discussed considering the characteristics of the machining method. Som...For the design of gears manufactured with wire electrical discharge machining (WEDM) technology, determination of the primary gear parameters is discussed considering the characteristics of the machining method. Some constraint conditions on gear parameters are abnegated, which makes micro gear design more flexible. Based on gear mesh theory, the algorithm of generating gear tooth profiles is studied, which includes involute and non-involute curve segments. The phenomena of tooth profile interferences during gear mesh are analyzed, and a gear mesh simulation algorithm is designed. Based on ACIS, the WEDM oriented software for the design and mesh simulation of micro gears is developed, by which the modeling, mesh simulation and interference check can be implemented. An experiment is carried out to design and manufacture a pair of micro involute gears, and the proposed method is proved feasible.展开更多
基金supported by the Core Technology Application of Hubei Agricultural Machinery Equipment,China(Grant No.HBSNYT202221).
文摘The plastic gear is widely used in agricultural equipment,electronic products,aircraft,and other fields because of its light weight,corrosion resistance,and self-lubrication ability.However,it has a limited range of working conditions due to the low modulus and thermal deformation of the material,especially in high-speed and heavy-duty situations.A compensation modification method(CMM)is proposed in this paper to restrain the heat production of the plastic gear tooth surface by considering the meshing deformation,and the corresponding modification formulas are derived.Improving the position of the maximum contact pressure(CP)and the relative sliding velocity(RSV)of the tooth surface resulted in a 30%lower steady-state temperature rise of the modified plastic gear tooth surface than that of the unmodified plastic gear.Meanwhile,the temperature rise of plastic gear with CMM is reduced by 19%compared with the traditional modification of removal material.Then,the influences of modification index and the segment number of modification on the meshing characteristics of plastic gear with CMM are discussed,such as maximum CP and steadystate temperature rise,RSV,transmission error,meshing angle,and contact ratio.A smaller segment number and modification index are beneficial to reduce the temperature rise of plastic gear with CMM.Finally,an experiment is carried out to verify the theoretical analysis model.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51405400 & 51375403)the Fundamental Research Funds for the Central Universities (Grant Nos. 2682015ZD12 & 2682016CX125)the Fundamental Research Funds for State Key Laboratory of Traction Power (Grant Nos. 2015TPL_T14 & 2014TPL_T10)
文摘Tooth profile shift will change the thickness of gear teeth and a part of geometrical parameters of a gear pair, thus influencing its mesh stiffness and consequently the dynamic performances. In this paper, an analytical mesh stiffness calculation model for an internal gear pair in mesh considering the tooth profile shift is developed based on the potential energy principle. Geometrical representations of the tooth profile shift are firstly derived, and then fitted into the analytical tooth stiffness model of gears. This model could supply a convenient way for mesh stiffness calculation of profile shifted spur gears. Then, simulation studies are conducted based on the developed model to demonstrate the effects of tooth profile shift coefficient on the tooth compliances and the mesh stiffness of the internal spur gear pair. The results show that tooth profile shift has an obvious influence on the mean value, amplitude variation and phase of the mesh stiffness, from which it can be predicted that the dynamic response of an internal gear transmission system will be affected by the tooth profile shift.
基金This work is supported in part by National Natural Science Fund(Grant No.51375282)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1266)Special funds for Cultivation of Taishan Scholars and Postgraduate Innovation Fund of Shandong University of Science&Technology(Grant No.YC140314).
文摘Planetary gear trains are widely applied in various transmission units.Whether strengths of all gears are accurately calculated or not can affect reliability of the entire system significantly.Strength calculation method for planetary gear trains usually follows the method for cylindrical gears,in which the worst meshing positions for both contact stress and bending stress cannot be determined precisely,and calculation results tend to be conservative.To overcome these shortcomings,a kinematics analysis for a planetary gear train is firstly performed,in which the influence of relative speed is investigated.Then the finite element strength analysis of a planetary gear train based on its transient meshing properties is carried out in ANSYS.Time–history curves of contact and bending stresses of sun gear,planetary gears and ring gear are respectively obtained.Also the accurate moment and its corresponding position of the maximum stress are precisely determined.Finally,calculation results of finite element method(FEM)and traditional method are compared in order to verify the effectiveness.Simulation and comparison show the stability of the proposed method in this paper.Researches in this paper establish the foundations for fatigue analysis and optimization for a planetary gear train.
基金The Teaching and Research Award Program for Out-standing Young Teachers in Higher Education Institutions of MOE,P.R.China.
文摘For the design of gears manufactured with wire electrical discharge machining (WEDM) technology, determination of the primary gear parameters is discussed considering the characteristics of the machining method. Some constraint conditions on gear parameters are abnegated, which makes micro gear design more flexible. Based on gear mesh theory, the algorithm of generating gear tooth profiles is studied, which includes involute and non-involute curve segments. The phenomena of tooth profile interferences during gear mesh are analyzed, and a gear mesh simulation algorithm is designed. Based on ACIS, the WEDM oriented software for the design and mesh simulation of micro gears is developed, by which the modeling, mesh simulation and interference check can be implemented. An experiment is carried out to design and manufacture a pair of micro involute gears, and the proposed method is proved feasible.