Objective:To examine the hepatoprotective effects of gedunin in streptozotocin(STZ)-induced diabetic rats.Methods:Rats were divided into 4 groups:control,STZ,gedunin,and STZ+gedunin.Biochemical parameters for liver fu...Objective:To examine the hepatoprotective effects of gedunin in streptozotocin(STZ)-induced diabetic rats.Methods:Rats were divided into 4 groups:control,STZ,gedunin,and STZ+gedunin.Biochemical parameters for liver function and liver histology were studied.The molecular interaction of gedunin with the liver glucose transporters GLUT2 and SGLT1 was examined using AutoDock Vina.Results:Gedunin attenuated STZ-induced increase in the levels of aspartate transaminase,alanine transaminase,alkaline phosphatase,lactate dehydrogenase and gamma-glutamyl transferase in the serum and liver tissue,reduced lipid peroxidation,and enhanced antioxidant activity.Histopathological studies showed considerable restoration of liver architecture in gedunin-treated diabetic rats.In silico studies revealed stable binding of gedunin with GLUT2 and SGLT1.Conclusions:Gedunin exerts hepatoprotective effects in STZ-induced diabetic rats by reducing liver enzymatic activities and oxidative stress.Further studies are warranted to verify the mechanism of its hepatoprotective action.展开更多
Huntington's disease(HD) is a deadly neurodegenerative disease with abnormal expansion of CAG repeats in the huntingtin gene. Mutant Huntingtin protein(m HTT) forms abnormal aggregates and intranuclear inclusions ...Huntington's disease(HD) is a deadly neurodegenerative disease with abnormal expansion of CAG repeats in the huntingtin gene. Mutant Huntingtin protein(m HTT) forms abnormal aggregates and intranuclear inclusions in specific neurons, resulting in cell death. Here,we tested the ability of a natural heat-shock protein 90 inhibitor, Gedunin, to degrade transfected m HTT in Neuro-2 a cells and endogenous m HTT aggregates and intranuclear inclusions in both fibroblasts from HD patients and neurons derived from induced pluripotent stem cells from patients. Our data showed that Gedunin treatment degraded transfected m HTT in Neuro-2 a cells, endogenous m HTT aggregates and intranuclear inclusions in fibroblasts from HD patients, and in neurons derived from induced pluripotent stem cells from patients in a dose-and time-dependent manner, and its activity depended on the proteasomal pathway rather than the autophagy route. These findings also showed that although Gedunin degraded abnormal m HTT aggregates and intranuclear inclusions in cells from HD patient, it did not affect normal cells, thus providing a new perspective for using Gedunin to treat HD.展开更多
文摘Objective:To examine the hepatoprotective effects of gedunin in streptozotocin(STZ)-induced diabetic rats.Methods:Rats were divided into 4 groups:control,STZ,gedunin,and STZ+gedunin.Biochemical parameters for liver function and liver histology were studied.The molecular interaction of gedunin with the liver glucose transporters GLUT2 and SGLT1 was examined using AutoDock Vina.Results:Gedunin attenuated STZ-induced increase in the levels of aspartate transaminase,alanine transaminase,alkaline phosphatase,lactate dehydrogenase and gamma-glutamyl transferase in the serum and liver tissue,reduced lipid peroxidation,and enhanced antioxidant activity.Histopathological studies showed considerable restoration of liver architecture in gedunin-treated diabetic rats.In silico studies revealed stable binding of gedunin with GLUT2 and SGLT1.Conclusions:Gedunin exerts hepatoprotective effects in STZ-induced diabetic rats by reducing liver enzymatic activities and oxidative stress.Further studies are warranted to verify the mechanism of its hepatoprotective action.
基金supported by the National Key Research and Development Program of China (2018YFA0108004)the National Natural Science Foundation of China (81271259)
文摘Huntington's disease(HD) is a deadly neurodegenerative disease with abnormal expansion of CAG repeats in the huntingtin gene. Mutant Huntingtin protein(m HTT) forms abnormal aggregates and intranuclear inclusions in specific neurons, resulting in cell death. Here,we tested the ability of a natural heat-shock protein 90 inhibitor, Gedunin, to degrade transfected m HTT in Neuro-2 a cells and endogenous m HTT aggregates and intranuclear inclusions in both fibroblasts from HD patients and neurons derived from induced pluripotent stem cells from patients. Our data showed that Gedunin treatment degraded transfected m HTT in Neuro-2 a cells, endogenous m HTT aggregates and intranuclear inclusions in fibroblasts from HD patients, and in neurons derived from induced pluripotent stem cells from patients in a dose-and time-dependent manner, and its activity depended on the proteasomal pathway rather than the autophagy route. These findings also showed that although Gedunin degraded abnormal m HTT aggregates and intranuclear inclusions in cells from HD patient, it did not affect normal cells, thus providing a new perspective for using Gedunin to treat HD.