This paper examines literature that claims,suggests,or implies that floods with"colloidal dispersion gels"(CDGs)are superior to polymer floods for oil recovery.The motivation for this report is simple.If CDG...This paper examines literature that claims,suggests,or implies that floods with"colloidal dispersion gels"(CDGs)are superior to polymer floods for oil recovery.The motivation for this report is simple.If CDGs can propagate deep into the porous rock of a reservoir,and at the same time,provide resistance factors or residual resistance factors that are greater than those for the same polymer formulation without the crosslinker,then CDGs should be used in place of polymer solutions for most/all polymer,surfactant,and ASP floods.In contrast,if the claims are not valid,(1)money spent on crosslinker in the CDG formulations was wasted,(2)the mobility reduction/mobility control for CDG field projects was under-designed,and(3)reservoir performance could have been damaged by excessive loss of polymer,face-plugging by gels,and/or excessive fracture extension.From this review,the clear answer is that there is no credible evidence that colloidal dispersion gels can propagate deep into the porous rock of a reservoir,and at the same time,provide resistance factors or residual resistance factors that are greater than those for the same polymer formulation without the crosslinker.CDGs have been sold using a number of misleading and invalid arguments.Very commonly,Hall plots are claimed to demonstrate that CDGs provide higher resistance factors and/or residual resistance factors than normal polymer solutions.However,because Hall plots only monitor injection pressures at the wellbore,they reflect the composite of face plugging/formation damage,in-situ mobility changes,and fracture extension.Hall plots cannot distinguish between these effects-so they cannot quantify in situ resistance factors or residual resistance factors.Laboratory studiesdwhere CDG gelants were forced through short cores during 2-3 h-have incorrectly been cited as proof that CDGs will propagate deep(hundreds of feet)into the porous rock of a reservoir over the course of months.In contrast,most legitimate laboratory studies reveal that the gelation time for CDGs is a day or less and that CDGs will not propagate through porous rock after gelation.A few cases were noted where highly depleted Al and/or HPAM fluids passed through cores after one week of aging.Details about these particular formulations/experiments were sparse and questions remain about their reproducibility.No credible evidence indicates that the CDG can propagate deep into a reservoir(over the course of weeks or months)and still provide a greater effect than that from the polymer alone.With one exception,aluminum from the CDG was never reported to be produced in a field application.In the exception,Chang reported producing 1-20%of the injected aluminum concentration.The available evidence suggests that some free(unreacted)HPAM and aluminum that was associated with the original CDG can propagate through porous media.However,there is no evidence that this HPAM or aluminum provides mobility reduction greater than that for the polymer formulation without crosslinker.展开更多
Micro-scale and nano-scale dispersed gel particles(DPG)are capable of deep migration in oil reservoirs due to their deformability,viscoelasticity,and suitable particle size.Therefore,it has been widely studied and app...Micro-scale and nano-scale dispersed gel particles(DPG)are capable of deep migration in oil reservoirs due to their deformability,viscoelasticity,and suitable particle size.Therefore,it has been widely studied and applied in reservoir conformance control in recent years.However,for highly permeable channels,their plugging performance is still limited.In addition,conventional in situ cross-linked polymer gels(ISCPGs)have fast gelation time under extremely high-temperature conditions,which often causes problems such as difficulty in pumping.Therefore,a re-cross linkable dispersed particle gel(RDPG)system applied for conformance control in highly permeable channels of extremely high-temperature petroleum reservoirs was investigated.The particle size distribution,gelation time,gel strength,injection performance,and perfo rmance strength in po rous media were investigated using a laser particle size meter,the Sydansk bottle test method,rheometer,and core displacement experiments,respectively.Results show that the RDPG suspension can be stable for more than 6 months at room temperature with storage modulus G’much lower than 10 Pa.It can pass through the pore throat by elastic deformation effect and does not cause strong blockage.Moreover,it can undergo re-crosslinking reaction at 150℃to form a strong bulk gel.The gel strength G’of re-crosslinked RDPG can be as high as 69.3 Pa,which meets the strength requirement of conformance control.The RDPG suspension has the properties of easy injection,and it also has strong plugging,and high-temperature resistance after re-crosslinked in the core,which can be a very promising material for conformance improvement in extremely high-temperature reservoirs.展开更多
The effect of mechanical strength of the dispersed particle gel(DPG)on its macro plugging performance is significant,however,little study has been reported.In this paper,DPG particles with different mechanical strengt...The effect of mechanical strength of the dispersed particle gel(DPG)on its macro plugging performance is significant,however,little study has been reported.In this paper,DPG particles with different mechanical strengths were obtained by mechanical shearing of bulk gels prepared with different formula.Young’s moduli of DPG particles on the micro and nano scales were measured by atomic force microscope for the first time.The mapping relationship among the formula of bulk gel,the Young’s moduli of the DPG particles and the final plugging performance were established.The results showed that when the Young’s moduli of the DPG particles increased from 82 to 328 Pa,the plugging rate increased significantly from 91.46%to 97.10%due to the distinctly enhanced stacking density and strength at this range.While when the Young’s moduli of the DPG particles surpassed 328 Pa,the further increase of plugging rate with the Young’s moduli of the DPG particles became insignificant.These results indicated that the improvement of plugging rate was more efficient by adjusting the Young’s moduli of the DPG particles within certain ranges,providing guidance for improving the macroscopic application properties of DPG systems in reservoir heterogeneity regulation.展开更多
文摘This paper examines literature that claims,suggests,or implies that floods with"colloidal dispersion gels"(CDGs)are superior to polymer floods for oil recovery.The motivation for this report is simple.If CDGs can propagate deep into the porous rock of a reservoir,and at the same time,provide resistance factors or residual resistance factors that are greater than those for the same polymer formulation without the crosslinker,then CDGs should be used in place of polymer solutions for most/all polymer,surfactant,and ASP floods.In contrast,if the claims are not valid,(1)money spent on crosslinker in the CDG formulations was wasted,(2)the mobility reduction/mobility control for CDG field projects was under-designed,and(3)reservoir performance could have been damaged by excessive loss of polymer,face-plugging by gels,and/or excessive fracture extension.From this review,the clear answer is that there is no credible evidence that colloidal dispersion gels can propagate deep into the porous rock of a reservoir,and at the same time,provide resistance factors or residual resistance factors that are greater than those for the same polymer formulation without the crosslinker.CDGs have been sold using a number of misleading and invalid arguments.Very commonly,Hall plots are claimed to demonstrate that CDGs provide higher resistance factors and/or residual resistance factors than normal polymer solutions.However,because Hall plots only monitor injection pressures at the wellbore,they reflect the composite of face plugging/formation damage,in-situ mobility changes,and fracture extension.Hall plots cannot distinguish between these effects-so they cannot quantify in situ resistance factors or residual resistance factors.Laboratory studiesdwhere CDG gelants were forced through short cores during 2-3 h-have incorrectly been cited as proof that CDGs will propagate deep(hundreds of feet)into the porous rock of a reservoir over the course of months.In contrast,most legitimate laboratory studies reveal that the gelation time for CDGs is a day or less and that CDGs will not propagate through porous rock after gelation.A few cases were noted where highly depleted Al and/or HPAM fluids passed through cores after one week of aging.Details about these particular formulations/experiments were sparse and questions remain about their reproducibility.No credible evidence indicates that the CDG can propagate deep into a reservoir(over the course of weeks or months)and still provide a greater effect than that from the polymer alone.With one exception,aluminum from the CDG was never reported to be produced in a field application.In the exception,Chang reported producing 1-20%of the injected aluminum concentration.The available evidence suggests that some free(unreacted)HPAM and aluminum that was associated with the original CDG can propagate through porous media.However,there is no evidence that this HPAM or aluminum provides mobility reduction greater than that for the polymer formulation without crosslinker.
基金supported by the Research Foundation of China University of Petroleum-Beijing at Karamay(No.XQZX20200010)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2019D01B57)+2 种基金the Tianshan Talent Project(No.2019Q025)the Sichuan Province Regional Innovation Cooperation Project(No.2020YFQ0036)the CNPC Strategic Cooperation Science and Technology Project(ZLZX2020-01-04-04)
文摘Micro-scale and nano-scale dispersed gel particles(DPG)are capable of deep migration in oil reservoirs due to their deformability,viscoelasticity,and suitable particle size.Therefore,it has been widely studied and applied in reservoir conformance control in recent years.However,for highly permeable channels,their plugging performance is still limited.In addition,conventional in situ cross-linked polymer gels(ISCPGs)have fast gelation time under extremely high-temperature conditions,which often causes problems such as difficulty in pumping.Therefore,a re-cross linkable dispersed particle gel(RDPG)system applied for conformance control in highly permeable channels of extremely high-temperature petroleum reservoirs was investigated.The particle size distribution,gelation time,gel strength,injection performance,and perfo rmance strength in po rous media were investigated using a laser particle size meter,the Sydansk bottle test method,rheometer,and core displacement experiments,respectively.Results show that the RDPG suspension can be stable for more than 6 months at room temperature with storage modulus G’much lower than 10 Pa.It can pass through the pore throat by elastic deformation effect and does not cause strong blockage.Moreover,it can undergo re-crosslinking reaction at 150℃to form a strong bulk gel.The gel strength G’of re-crosslinked RDPG can be as high as 69.3 Pa,which meets the strength requirement of conformance control.The RDPG suspension has the properties of easy injection,and it also has strong plugging,and high-temperature resistance after re-crosslinked in the core,which can be a very promising material for conformance improvement in extremely high-temperature reservoirs.
基金financially supported by the National Key Research and Development Program of China(No.2019YFA0708700)National Natural Science Foundation of China(52174054,51804326)Shandong Provincial Natural Science Foundation(ZR2019BEE046)
文摘The effect of mechanical strength of the dispersed particle gel(DPG)on its macro plugging performance is significant,however,little study has been reported.In this paper,DPG particles with different mechanical strengths were obtained by mechanical shearing of bulk gels prepared with different formula.Young’s moduli of DPG particles on the micro and nano scales were measured by atomic force microscope for the first time.The mapping relationship among the formula of bulk gel,the Young’s moduli of the DPG particles and the final plugging performance were established.The results showed that when the Young’s moduli of the DPG particles increased from 82 to 328 Pa,the plugging rate increased significantly from 91.46%to 97.10%due to the distinctly enhanced stacking density and strength at this range.While when the Young’s moduli of the DPG particles surpassed 328 Pa,the further increase of plugging rate with the Young’s moduli of the DPG particles became insignificant.These results indicated that the improvement of plugging rate was more efficient by adjusting the Young’s moduli of the DPG particles within certain ranges,providing guidance for improving the macroscopic application properties of DPG systems in reservoir heterogeneity regulation.