期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Gel-Based Triboelectric Nanogenerators for Flexible Sensing:Principles,Properties,and Applications
1
作者 Peng Lu Xiaofang Liao +7 位作者 Xiaoyao Guo Chenchen Cai Yanhua Liu Mingchao Chi Guoli Du Zhiting Wei Xiangjiang Meng Shuangxi Nie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期257-303,共47页
The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable,portable,and self-powered flexible sensing devices.Triboelectric nanogenerators(TENGs)based ... The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable,portable,and self-powered flexible sensing devices.Triboelectric nanogenerators(TENGs)based on gel materials(with excellent conductivity,mechanical tunability,environmental adaptability,and biocompatibility)are considered an advanced approach for developing a new generation of flexible sensors.This review comprehensively summarizes the recent advances in gel-based TENGs for flexible sensors,covering their principles,properties,and applications.Based on the development requirements for flexible sensors,the working mechanism of gel-based TENGs and the characteristic advantages of gels are introduced.Design strategies for the performance optimization of hydrogel-,organogel-,and aerogel-based TENGs are systematically summarized.In addition,the applications of gel-based TENGs in human motion sensing,tactile sensing,health monitoring,environmental monitoring,human-machine interaction,and other related fields are summarized.Finally,the challenges of gel-based TENGs for flexible sensing are discussed,and feasible strategies are proposed to guide future research. 展开更多
关键词 Triboelectric nanogenerators gel materials Triboelectric materials Flexible sensing
下载PDF
Multiscale cellulose-based fireproof and thermal insulation gel materials with water-regulated forms
2
作者 Chong-Han Yin Huai-Bin Yang +4 位作者 Zi-Meng Han Kun-Peng Yang Zhang-Chi Ling Qing-Fang Guan Shu-Hong Yu 《Nano Research》 SCIE EI CSCD 2023年第2期3379-3386,共8页
Different forms of construction materials(e.g.,paints,foams,and boards)dramatically improve the quality of life.With the increasing environmental requirements for buildings,it is necessary to develop a comprehensive s... Different forms of construction materials(e.g.,paints,foams,and boards)dramatically improve the quality of life.With the increasing environmental requirements for buildings,it is necessary to develop a comprehensive sustainable construction material that is flexible in application and exhibits excellent performance,such as fireproofing and thermal insulation.Herein,an adjustable multiform material strategy by water regulation is proposed to meet the needs of comprehensive applications and reduce environmental costs.Multiform gels are constructed based on multiscale cellulose fibers and hollow glass microspheres,with fireproofing and thermal insulation.Unlike traditional materials,this multiscale cellulose-based gel can change forms from dispersion to paste to dough by adjusting its water content,which can realize various construction forms,including paints,foams,and low-density boards according to different scenarios and corresponding needs. 展开更多
关键词 BIOINSPIRED multiscale structure NANOCELLULOSE water regulation gel material
原文传递
Bioinspired Adaptive Gel Materials with Synergistic Heterostructures 被引量:2
3
作者 Zi-Guang Zhao Yi-Chao Xu +1 位作者 Ruo-Chen Fang Ming-Jie Liu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第6期683-683,684-696,共14页
In nature, many biological soft tissues with synergistic heterostructures, such as sea cucumbers, skeletal muscles and cartilages, exhibit high functionality to adapt to complex environments. In artificial soft materi... In nature, many biological soft tissues with synergistic heterostructures, such as sea cucumbers, skeletal muscles and cartilages, exhibit high functionality to adapt to complex environments. In artificial soft materials, hydrogels are similar to biological soft tissues due to the unique integration of "soft and wet" properties and elastic characteristics. However, currently hydrogel materials lack their necessary adaptability, including narrow working temperature windows and uncontrollable mechanics, thus restrict their engineering application in complex environments. Inspired by abovementionedbiological soft tissues, researchers have increasingly developed heterostructural gel materials as functional soft materials with high adaptability to various mechanical and environmental conditions. This article summarizes our recent work on high-performance adaptive gel materials with synergistic heterostructures, including the critical design criteria and the state-of-the-art fabrication strategies of our gel materials. The functional adaptation properties of these heterostructural gel materials are also presented in details, including temperature, wettability, mechanical and shape adaption. 展开更多
关键词 Bioinspired materials Adaptive gels Hydrogels Mechanical strength Shape memory
原文传递
Cellulose-based functional gels and applications in flexible supercapacitors
4
作者 Xiuzhi Zhu Geyuan Jiang +6 位作者 Gang Wang Ying Zhu Wanke Cheng Suqing Zeng Jianhong Zhou Guangwen Xu Dawei Zhao 《Resources Chemicals and Materials》 2023年第2期177-188,共12页
In order to resolve the global crisis of fossil energy shortage and climate warming,the development of efficient energy storage devices is a significant topic at present.Supercapacitors as the novel type of energy sto... In order to resolve the global crisis of fossil energy shortage and climate warming,the development of efficient energy storage devices is a significant topic at present.Supercapacitors as the novel type of energy storage devices have the unique advantages,including the fast charging/discharging behaviors,high-energy/power density,and stable cycling performance.Compared with traditional supercapacitors,flexible supercapacitors are environmen-tally friendly,light weight,small size and high safety.Therefore,flexible supercapacitors have a wide application prospect in emerging electronic devices.Due to its flexibility,biocompatibility,and structure designability,cellu-lose and its gel materials are gradually used as electrodes,separators and electrolytes in flexible supercapacitors.Several construction processes at molecular scale for high-performance cellulose gels are summarized.Meanwhile,this review covers the recent progress of developing the flexible supercapacitors and all-in-one supercapacitors based on cellulose functional gels.We finally discussed the potential challenges and opportunities for cellulose and its derived materials in new-style flexible supercapacitors and other electronic devices. 展开更多
关键词 Cellulose Functional design gel materials Flexible supercapacitors
下载PDF
Novel mechanical behavior of periodic structure with the pattern transformation 被引量:1
5
作者 Jianying Hu Yuhao He +1 位作者 Jincheng Lei Zishun Liu 《Theoretical & Applied Mechanics Letters》 CAS 2013年第5期35-38,共4页
Abstract In periodic cellular structures, novel pattern transformations are triggered by a reversible elastic instability under the axial compression. Based on the deformation-triggered new pattern, periodic cellular ... Abstract In periodic cellular structures, novel pattern transformations are triggered by a reversible elastic instability under the axial compression. Based on the deformation-triggered new pattern, periodic cellular structures can achieve special mechanical properties. In this paper, the designed architecture materials which include elastomer matrixes containing empty holes or filled holes with hydrogel material are modeled and simulated to investigate the mechanical property of the periodic materials. By analyzing the relationship between nominal stress and nominal strain of periodic material, and the corresponding deformed patterns, the influence of geometry and shapes of the holes on the mechanical property of architecture material is studied in more details. We hope this study can provide future perspectives for the deformation-triggered periodic structures. 展开更多
关键词 pattern transformation periodic structures composite gel material mechanical property
下载PDF
Progress on nanostructured gel catalysts for oxygen electrocatalysis 被引量:2
6
作者 Huan Yang Huilin Hu +4 位作者 Chenfeng Xia Feng You Junlong Yao Xueliang Jiang Bao Yu Xia 《Nano Research》 SCIE EI CSCD 2022年第12期10343-10356,共14页
Driven by the serious ecological problems,it is urgent to explore high-efficiency sustainable energy technologies.Oxygen electrocatalysis acts as important half-reactions in the emerging electrochemical energy techniq... Driven by the serious ecological problems,it is urgent to explore high-efficiency sustainable energy technologies.Oxygen electrocatalysis acts as important half-reactions in the emerging electrochemical energy techniques including electrolysis and batteries.Gel composites exhibit the merits of rich porous,superior hydrophilic,and large specific surface area,which can significantly improve the electrolyte penetration and boost the kinetics process of oxygen electrocatalysis.In this invited contribution,the advances and challenges of a novel gel materials for oxygen electrocatalysis are summarized.Starting from the structure-activity-performance relationship of gel materials,synthetic routes of nanostructured gel materials,namely,radical polymerization,sol-gel method,hydrothermal/solvothermal reactions,and ligand-substitution method,are introduced.Afterward,the gel composites are divided into polymer-based,metal-based,and carbon-based materials in turn,and their applications in oxygen electrocatalysis are discussed respectively.At the end,the perspective and challenges for advanced gel oxygen electrocatalysts are proposed. 展开更多
关键词 oxygen electrocatalysis gel materials polymer metal carbon
原文传递
Gelation of polymeric nanoparticles 被引量:2
7
作者 Hua Wu Massimo Morbidelli 《Particuology》 SCIE EI CAS CSCD 2014年第3期1-11,共11页
We review how, starting from polymeric nanoparticles, to generate clusters of fractal morphology and to expand the entire space and interconnect to form gels, through either Brownian motion or intense shear-induced ag... We review how, starting from polymeric nanoparticles, to generate clusters of fractal morphology and to expand the entire space and interconnect to form gels, through either Brownian motion or intense shear-induced aggregation. In the case of Brownian motion-induced gelation, specific techniques developed to obtain uniform structure of gels under both reaction-limited and diffusion-limited cluster aggregation conditions have been described. In the case of intense shear-induced gelation as a newly developed technique, our focus is on its principle, theoretical development and advantages with respect to Brownian motion-induced gelation in practical applications. We consider gelation of both rigid and soft particles. As a physical process, the bonding between the particles within gels is owed to van der Waals attractions, thus being easily broken. However, in the case of soft particles that can coalesce upon contact, the coalescence can allow the particles to stick together forming permanent gels. In this case, the gel structure can be controlled by controlling the degree of coalescence. Techniques used to control the degree of coalescence have also been described. 展开更多
关键词 Structured material Fractal gelation gel Polymer
原文传递
Characterization and Electrochemical Properties of Nanostructured Zr-Doped Anatase TiO_2 Tubes Synthesized by Sol–Gel Template Route 被引量:1
8
作者 Denis P.Opra Sergey V.Gnedenkov +6 位作者 Sergey L.Sinebryukhov Elena I.Voit Alexander A.Sokolov Evgeny B.Modin Anatoly B.Podgorbunsky Yury V.Sushkov Veniamin V.Zheleznov 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第6期527-534,共8页
A series of nanostructured Zr-doped anatase TiO_2 tubes with the Zr/Ti molar ratio of 0.01, 0.02, 0.03, and0.09 were prepared by a sol–gel technology on a carbon fiber template. The electrochemical performance of Zr-... A series of nanostructured Zr-doped anatase TiO_2 tubes with the Zr/Ti molar ratio of 0.01, 0.02, 0.03, and0.09 were prepared by a sol–gel technology on a carbon fiber template. The electrochemical performance of Zr-doped anatase TiO_2 as anodes for rechargeable lithium batteries was investigated and compared with undoped titania. Tests represented that after 35-fold charge/discharge cycling at C/10 the reversible capacity of Zr-doped titania(Zr/Ti = 0.03) reaches 135 m A h g^(-1), while the capacity of undoped titania(Zr/Ti = 0) yielded only 50 m A h g^(-1). Based on the results of the physicochemical investigation, three reasons of improving electrochemical performance of Zr-doped titania were suggested. According to the scanning electron microscopy and transmission electron microscopy, Zr^(4+) doping induces a decrease in nanoparticle size, which facilitates the Li+diffusion. The Raman investigations show the more open structure of Zr-doped TiO_2 as compared to undoped titania due to changing of the unit cell parameters, that significantly affects on the reversibility of the insertion/extraction process. The electrochemical impedance spectroscopy results indicate that substitution of Zr^(4+) for Ti^(4+) into anatase TiO_2 has favorable effects on the conductivity. 展开更多
关键词 Li-ion batteries Anatase titania Nanostructured materials Sol–gel template process Doping Electrochemical performance
原文传递
Dynamic covalent gels assembled from small molecules:from discrete gelators to dynamic covalent polymers
9
作者 Jian-Yong Zhang Li-Hua Zeng Juan Feng 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第2期168-183,共16页
Dynamic covalent chemistry has emerged recently to be a powerful tool to construct functional materials.This article reviews the progress in the research and development of dynamic covalent chemistry in gels assembled... Dynamic covalent chemistry has emerged recently to be a powerful tool to construct functional materials.This article reviews the progress in the research and development of dynamic covalent chemistry in gels assembled from small molecules.First dynamic covalent reactions used in gels are reviewed to understand the dynamic covalent bonding.Afterwards the catalogues of dynamic covalent gels are reviewed according to the nature of gelators and the interactions between gelators.Dynamic covalent bonding can be involved to form low molecular weight gelators.Low molecular weight molecules with multiple functional groups react to form dynamic covalent cross-linked polymers and act as gelators.Two catalogues of gels show different properties arising from their different structures.This review aims to illustrate the structure-property relationships of these dynamic covalent gels. 展开更多
关键词 gels Dynamic covalent chemistry Supramolecular gels Molecular gels Porous materials
原文传递
Fabrication of NiO coated SiO_2 and SiO_2 coated NiO for the removal of Pb^(2+) ions 被引量:1
10
作者 Saba Noor Muhammad Waseem +3 位作者 Umer Rashid Muhammad Anis-ur-Rehman Wajid Rehman Khalid Mahmood 《Chinese Chemical Letters》 SCIE CAS CSCD 2014年第5期819-822,共4页
We have prepared silica,SiO2coated NiO and NiO coated SiO2by sol-gel method.The physicochemical properties of the desired materials were investigated by surface charge properties,scanning electron microscopy(SEM),en... We have prepared silica,SiO2coated NiO and NiO coated SiO2by sol-gel method.The physicochemical properties of the desired materials were investigated by surface charge properties,scanning electron microscopy(SEM),energy dispersive X-ray(EDX) spectroscopy,surface area measurements and X-ray diffraction(XRD) analyses.The point of zero charge(PZC) of the solid was determined by the salt addition method.In coated materials,two PZC values were noted representing the surface charge of their counterparts.The SEM image of SiO2coated NiO displays a uniform coating of silica on the surface of NiO whereas in case of NiO coated SiO2,a honeycomb like appearance was observed with highly porous structures.In the diffractograms of NiO,the characteristic peaks were suppressed in NiO coated silica however,no diffraction peak could be seen in SiO2coated NiO.Batch adsorption technique was applied for the removal of Pb2+ions from aqueous solution.The sorption trend for Pb2+ions was observed in the order of NiO coated SiO2〉 SiO2coated NiO 〉 NiO 〉 SiO2.This trend confirms that the coated materials have more sorption capacities than their parent counterparts. 展开更多
关键词 Characterization Coated materials Lead removal Sol–gel
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部