The adsorption properties of a novel gel-type weak acid resin (110-H) for Pb2+ were investigated using chemical methods and IR spectrometry.The optimal adsorption condition of 110-H for Pb2+ is at pH=6.49 in HAc-NaAc ...The adsorption properties of a novel gel-type weak acid resin (110-H) for Pb2+ were investigated using chemical methods and IR spectrometry.The optimal adsorption condition of 110-H for Pb2+ is at pH=6.49 in HAc-NaAc medium and the statically saturated adsorption capacity is 485 mg/g at 298 K.Pb2+ adsorbed on 110-H resin can be eluted with 0.025 mol/L HCl quantificationally.The adsorption rate constants determined under the temperatures of 288,298,308 and 318 K are 2.46×10-5,3.82×10-5,4.46×10-5 and 5.71×10-5 s-1,respectively.The apparent activation energy,Ea,is 18.1 kJ/mol and the thermodynamic parameters of adsorption,ΔH=20.9 kJ/mol,ΔS=161 J/(mol.K) and ΔG298 K =-48.0 kJ/mol,respectively.The adsorption behavior of 110-H resin for Pb2+ accords with the Langmuir isotherm.Infrared spectra show that the oxygen atoms of the functional group of resin coordinate with Pb2+ to form the coordination bands.展开更多
The adsorption and desorption behaviors of Yb(Ⅲ) on gel-type weak acid resin (110) were investigated. The influence of operational conditions such as contact time,initial concentration of Yb(Ⅲ),initial pH of s...The adsorption and desorption behaviors of Yb(Ⅲ) on gel-type weak acid resin (110) were investigated. The influence of operational conditions such as contact time,initial concentration of Yb(Ⅲ),initial pH of solution and temperature on the adsorption of Yb(Ⅲ) were also examined. The results showed that the optimal adsorption condition of 110 resin for Yb(Ⅲ) was achieved at pH=5.5 in HAc-NaAc medium. The maximum uptake capacity of Yb(Ⅲ) was 265.8 mg/g at 298 K. Yb(Ⅲ) could be eluted by using 3.0 mol/L HCl solution and the 110 resin could be regenerated and reused. The adsorption of Yb(Ⅲ) followed the Langmuir isotherm,and the correlation coefficients were evaluated. Various thermodynamic parameters such as standard enthalpy change (△H),standard entropy change (△S) and standard free energy change (△G) were evaluated. The adsorption of Yb(III) on the 110 resin was found to be endothermic in nature. Thomas model was successfully applied to experimental data to predict the breakthrough curves and to determine the characteristics parameters of the column useful for process design. And the resin sample both before and after adsorption was described by IR spectroscopy.展开更多
基金Project (Y404279) supported by the Natural Science Foundation of Zhejiang Province, China
文摘The adsorption properties of a novel gel-type weak acid resin (110-H) for Pb2+ were investigated using chemical methods and IR spectrometry.The optimal adsorption condition of 110-H for Pb2+ is at pH=6.49 in HAc-NaAc medium and the statically saturated adsorption capacity is 485 mg/g at 298 K.Pb2+ adsorbed on 110-H resin can be eluted with 0.025 mol/L HCl quantificationally.The adsorption rate constants determined under the temperatures of 288,298,308 and 318 K are 2.46×10-5,3.82×10-5,4.46×10-5 and 5.71×10-5 s-1,respectively.The apparent activation energy,Ea,is 18.1 kJ/mol and the thermodynamic parameters of adsorption,ΔH=20.9 kJ/mol,ΔS=161 J/(mol.K) and ΔG298 K =-48.0 kJ/mol,respectively.The adsorption behavior of 110-H resin for Pb2+ accords with the Langmuir isotherm.Infrared spectra show that the oxygen atoms of the functional group of resin coordinate with Pb2+ to form the coordination bands.
基金Project supported by the grants from the National Key Technologies Research and Development Program of China (2008BAD94B09)the Key Grant of Education Department of Zhejiang Province, China (Z200907459)
文摘The adsorption and desorption behaviors of Yb(Ⅲ) on gel-type weak acid resin (110) were investigated. The influence of operational conditions such as contact time,initial concentration of Yb(Ⅲ),initial pH of solution and temperature on the adsorption of Yb(Ⅲ) were also examined. The results showed that the optimal adsorption condition of 110 resin for Yb(Ⅲ) was achieved at pH=5.5 in HAc-NaAc medium. The maximum uptake capacity of Yb(Ⅲ) was 265.8 mg/g at 298 K. Yb(Ⅲ) could be eluted by using 3.0 mol/L HCl solution and the 110 resin could be regenerated and reused. The adsorption of Yb(Ⅲ) followed the Langmuir isotherm,and the correlation coefficients were evaluated. Various thermodynamic parameters such as standard enthalpy change (△H),standard entropy change (△S) and standard free energy change (△G) were evaluated. The adsorption of Yb(III) on the 110 resin was found to be endothermic in nature. Thomas model was successfully applied to experimental data to predict the breakthrough curves and to determine the characteristics parameters of the column useful for process design. And the resin sample both before and after adsorption was described by IR spectroscopy.