The bionic legs are generally driven by motors which have the disadvantages of large size and heavy weight.In contrast,the bionic legs driven by pneumatic artificial muscles(PAMs)have the advantages of light weight,go...The bionic legs are generally driven by motors which have the disadvantages of large size and heavy weight.In contrast,the bionic legs driven by pneumatic artificial muscles(PAMs)have the advantages of light weight,good bionics and flexibility.A kind of bionic leg driven by PAMs is designed.The proportional-integral-derivative(PID)algorithm and radial basis function neural network(RBFNN)algorithm are combined to design RBFNN-PID controller,and a low-pass filter is added to the control system,which can effectively improve the jitter phenomenon of the joint during the experiment.It is verified by simulation that the RBFNN-PID algorithm is better than traditional PID algorithm,the response time of joint is improved from 0.15 s to 0.07 s,and the precision of joint position control is improved from 0.75°to 0.001°.The experimental results show that the amplitude of the change in error is reduced from 0.5°to 0.2°.It is verified by jumping experiment that the mechanism can realize jumping action under control,and can achieve the horizontal displacement of 500 mm and the vertical displacement of 250 mm.展开更多
Bionic robots are generally driven by motors.As robots driven by pneumatic artificial muscles(PAMs)have the advantages of light weight,good bionics and flexibility,more and more researchers have adopted PAMs to drive ...Bionic robots are generally driven by motors.As robots driven by pneumatic artificial muscles(PAMs)have the advantages of light weight,good bionics and flexibility,more and more researchers have adopted PAMs to drive bionic robots.A kind of bionic leg driven by PAMs for hopping is proposed in this work.A 3-DOF bionic leg driven by 4 PAMs is designed by analyzing the biological structure and movement principles of frog legs,and 3 kinds of leg configuration with different PAMs arrangement is proposed.One biarticular muscle is used to increase the joint rotating range.The bracket pulley and PAMs for driving joint can effectively increase its rotating range.The rotating range of hip and knee joint driven by a biarticular muscle is simulated.The simulation results show that the biarticular muscle can transfer the movement of the hip joint to the knee joint and increase the rotating range of the knee joint.The greater the contraction of PAM,the greater the rotating range of joint.The bionic leg can perform planned step distance and step height of hopping.展开更多
In this paper,we present the design,fabrication,locomotion and bionic analysis of a Soft Robotic Fish Actuated by Artificial Muscle(SoRoFAAM).As a carangiform swimmer,the most important part of SoRoFAAM-1,on the motio...In this paper,we present the design,fabrication,locomotion and bionic analysis of a Soft Robotic Fish Actuated by Artificial Muscle(SoRoFAAM).As a carangiform swimmer,the most important part of SoRoFAAM-1,on the motion point of view,is its tail designed around a bidirectional flexible bending actuator by layered bonding technology.This actuator is made of two artificial muscle modules based on Shape Memory Alloy(SMA)wires.Each artificial muscle module has four independent SMA-wire channels and is therefore capable of producing four different actuations.This design allows us to implement an adaptive regulated control strategy based on resistance feedback of the SMA wires to prevent them from overheating.To improve the actuation frequency to 2 Hz and the heat-dissipation ratio by 60%,we developed a round-robin heating strategy.Furthermore,the thermomechanical model of actuator is built,and the thermal transformation is analysed.The relationships between the actuation parameters and SoRoFAAM-1’s kinematic parameters are analysed.The versatility of the actuator endows SoRoFAAM-1 with cruise straight and turning abilities.Moreover,SoRoFAAM-1 has a good bionic fidelity;in particular,a maneuverability of 0.15,a head swing factor of 0.38 and a Strouhal number of 0.61.展开更多
The pivot turning function of quadruped bionic robots can improve their mobility in unstructured environment.A kind of bionic flexible body mechanism for quadruped robot was proposed in this paper,which is composed of...The pivot turning function of quadruped bionic robots can improve their mobility in unstructured environment.A kind of bionic flexible body mechanism for quadruped robot was proposed in this paper,which is composed of one bionic spine and four pneumatic artificial muscles(PAMs).The coordinated movement of the bionic flexible body and the leg mechanism can achieve pivot turning gait.First,the pivot turning gait planning of quadruped robot was analyzed,and the coordinated movement sequence chart of pivot turning was presented.Then the kinematics modeling of leg side swing and body bending for pivot turning was derived,which should meet the condition of the coordinated movement between bionic flexible body and leg mechanism.The PAM experiment was conducted to analyze its contraction characteristic.The study on pivot turning of the quadruped robot will lay a theoretical foundation for the further research on dynamic walking stability of the quadruped robot in unstructured environment.展开更多
基金Supported by the National Natural Science Foundation of China(No.51775323).
文摘The bionic legs are generally driven by motors which have the disadvantages of large size and heavy weight.In contrast,the bionic legs driven by pneumatic artificial muscles(PAMs)have the advantages of light weight,good bionics and flexibility.A kind of bionic leg driven by PAMs is designed.The proportional-integral-derivative(PID)algorithm and radial basis function neural network(RBFNN)algorithm are combined to design RBFNN-PID controller,and a low-pass filter is added to the control system,which can effectively improve the jitter phenomenon of the joint during the experiment.It is verified by simulation that the RBFNN-PID algorithm is better than traditional PID algorithm,the response time of joint is improved from 0.15 s to 0.07 s,and the precision of joint position control is improved from 0.75°to 0.001°.The experimental results show that the amplitude of the change in error is reduced from 0.5°to 0.2°.It is verified by jumping experiment that the mechanism can realize jumping action under control,and can achieve the horizontal displacement of 500 mm and the vertical displacement of 250 mm.
基金Supported by the National Natural Science Foundation of China(No.51775323,51375289)
文摘Bionic robots are generally driven by motors.As robots driven by pneumatic artificial muscles(PAMs)have the advantages of light weight,good bionics and flexibility,more and more researchers have adopted PAMs to drive bionic robots.A kind of bionic leg driven by PAMs for hopping is proposed in this work.A 3-DOF bionic leg driven by 4 PAMs is designed by analyzing the biological structure and movement principles of frog legs,and 3 kinds of leg configuration with different PAMs arrangement is proposed.One biarticular muscle is used to increase the joint rotating range.The bracket pulley and PAMs for driving joint can effectively increase its rotating range.The rotating range of hip and knee joint driven by a biarticular muscle is simulated.The simulation results show that the biarticular muscle can transfer the movement of the hip joint to the knee joint and increase the rotating range of the knee joint.The greater the contraction of PAM,the greater the rotating range of joint.The bionic leg can perform planned step distance and step height of hopping.
基金The authors gratefully acknowledge financial support from the National Science Foundation of China(Nos.61773358)and Cyrus Tang Foundation.
文摘In this paper,we present the design,fabrication,locomotion and bionic analysis of a Soft Robotic Fish Actuated by Artificial Muscle(SoRoFAAM).As a carangiform swimmer,the most important part of SoRoFAAM-1,on the motion point of view,is its tail designed around a bidirectional flexible bending actuator by layered bonding technology.This actuator is made of two artificial muscle modules based on Shape Memory Alloy(SMA)wires.Each artificial muscle module has four independent SMA-wire channels and is therefore capable of producing four different actuations.This design allows us to implement an adaptive regulated control strategy based on resistance feedback of the SMA wires to prevent them from overheating.To improve the actuation frequency to 2 Hz and the heat-dissipation ratio by 60%,we developed a round-robin heating strategy.Furthermore,the thermomechanical model of actuator is built,and the thermal transformation is analysed.The relationships between the actuation parameters and SoRoFAAM-1’s kinematic parameters are analysed.The versatility of the actuator endows SoRoFAAM-1 with cruise straight and turning abilities.Moreover,SoRoFAAM-1 has a good bionic fidelity;in particular,a maneuverability of 0.15,a head swing factor of 0.38 and a Strouhal number of 0.61.
基金Supported by the National Natural Science Foundation of China(No.51375289)Shanghai Municipal National Natural Science Foundation of China(No.13ZR1415500)the Innovation Fund of Shanghai Education Commission(No.13YZ020)
文摘The pivot turning function of quadruped bionic robots can improve their mobility in unstructured environment.A kind of bionic flexible body mechanism for quadruped robot was proposed in this paper,which is composed of one bionic spine and four pneumatic artificial muscles(PAMs).The coordinated movement of the bionic flexible body and the leg mechanism can achieve pivot turning gait.First,the pivot turning gait planning of quadruped robot was analyzed,and the coordinated movement sequence chart of pivot turning was presented.Then the kinematics modeling of leg side swing and body bending for pivot turning was derived,which should meet the condition of the coordinated movement between bionic flexible body and leg mechanism.The PAM experiment was conducted to analyze its contraction characteristic.The study on pivot turning of the quadruped robot will lay a theoretical foundation for the further research on dynamic walking stability of the quadruped robot in unstructured environment.