期刊文献+
共找到4,911篇文章
< 1 2 246 >
每页显示 20 50 100
Hyphae-mediated bioassembly of carbon fibers derivatives for advanced battery energy storage 被引量:1
1
作者 Lei Huang Zhong Qiu +10 位作者 Ping Liu Xinhui Xia Feng Cao Xinping He Chen Wang Wangjun Wan Yongqi Zhang Yang Xia Wenkui Zhang Minghua Chen Jiancang Zhou 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期140-150,共11页
Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herei... Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices. 展开更多
关键词 bioassembly carbon fibers energy storage graphene lithium-sulfur batteries
下载PDF
Understanding the catalysis of chromium trioxide added magnesium hydride for hydrogen storage and Li ion battery applications
2
作者 D.Pukazhselvan IhsanÇaha +3 位作者 Catarina de Lemos Sergey M.Mikhalev Francis Leonard Deepak Duncan Paul Fagg 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1117-1130,共14页
This study explores how the chemical interaction between magnesium hydride(MgH_(2))and the additive CrO_(3) influences the hydrogen/lithium storage characteristics of MgH_(2).We have observed that a 5 wt.%CrO_(3) addi... This study explores how the chemical interaction between magnesium hydride(MgH_(2))and the additive CrO_(3) influences the hydrogen/lithium storage characteristics of MgH_(2).We have observed that a 5 wt.%CrO_(3) additive reduces the dehydrogenation activation energy of MgH_(2) by 68 kJ/mol and lowers the required dehydrogenation temperature by 80℃.CrO_(3) added MgH_(2) was also tested as an anode in an Li ion battery,and it is possible to deliver over 90%of the total theoretical capacity(2038 mAh/g).Evidence for improved reversibility in the battery reaction is found only after the incorporation of additives with MgH_(2).In depth characterization study by X-ray diffraction(XRD)technique provides convincing evidence that the CrO_(3) additive interacts with MgH_(2) and produces Cr/MgO byproducts.Gibbs free energy analyses confirm the thermodynamic feasibility of conversion from MgH_(2)/CrO_(3) to MgO/Cr,which is well supported by the identification of Cr(0)in the powder by X ray photoelectron spectroscopy(XPS)technique.Through high resolution transmission electron microscopy(HRTEM)and energy dispersive spectroscopy(EDS)we found evidence for the presence of 5 nm size Cr nanocrystals on the surface of MgO rock salt nanoparticles.There is also convincing ground to consider that MgO rock salt accommodates Cr in the lattice.These observations support the argument that creation of active metal–metal dissolved rock salt oxide interface may be vital for improving the reactivity of MgH_(2),both for the improved storage of hydrogen and lithium. 展开更多
关键词 Hydrogen storage Rechargeable batteries Binary hydrides Metal oxides Catalytic mechanism.
下载PDF
Modeling,Simulation,and Risk Analysis of Battery Energy Storage Systems in New Energy Grid Integration Scenarios
3
作者 Xiaohui Ye Fucheng Tan +4 位作者 Xinli Song Hanyang Dai Xia Li Shixia Mu Shaohang Hao 《Energy Engineering》 EI 2024年第12期3689-3710,共22页
Energy storage batteries can smooth the volatility of renewable energy sources.The operating conditions during power grid integration of renewable energy can affect the performance and failure risk of battery energy s... Energy storage batteries can smooth the volatility of renewable energy sources.The operating conditions during power grid integration of renewable energy can affect the performance and failure risk of battery energy storage system(BESS).However,the current modeling of grid-connected BESS is overly simplistic,typically only considering state of charge(SOC)and power constraints.Detailed lithium(Li)-ion battery cell models are computationally intensive and impractical for real-time applications and may not be suitable for power grid operating conditions.Additionally,there is a lack of real-time batteries risk assessment frameworks.To address these issues,in this study,we establish a thermal-electric-performance(TEP)coupling model based on a multitime scale BESS model,incorporating the electrical and thermal characteristics of Li-ion batteries along with their performance degradation to achieve detailed simulation of grid-connected BESS.Additionally,considering the operating characteristics of energy storage batteries and electrical and thermal abuse factors,we developed a battery pack operational riskmodel,which takes into account SOCand charge-discharge rate(Cr),using amodified failure rate to represent the BESS risk.By integrating detailed simulation of energy storage with predictive failure risk analysis,we obtained a detailed model for BESS risk analysis.This model offers a multi-time scale integrated simulation that spans month-level energy storage simulation times,day-level performance degradation,minutescale failure rate,and second-level BESS characteristics.It offers a critical tool for the study of BESS.Finally,the performance and risk of energy storage batteries under three scenarios—microgrid energy storage,wind power smoothing,and power grid failure response—are simulated,achieving a real-time state-dependent operational risk analysis of the BESS. 展开更多
关键词 Grid-connected battery energy storage system thermal-electric-performance coupling model operational risk model failure rate risk analysis
下载PDF
Structural Isomers:Small Change with Big Difference in Anion Storage 被引量:1
4
作者 Huichao Dai Yuan Chen +7 位作者 Yueyue Cao Manli Fu Linnan Guan Guoqun Zhang Lei Gong Mi Tang Kun Fan Chengliang Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期222-234,共13页
Organic electrode materials are promising for batteries.However,the reported organic electrodes are often facing the challenges of low specific capacity,low voltage,poor rate capability and vague charge storage mechan... Organic electrode materials are promising for batteries.However,the reported organic electrodes are often facing the challenges of low specific capacity,low voltage,poor rate capability and vague charge storage mechanisms,etc.Isomers are good platform to investigate the charge storage mechanisms and enhance the performance of batteries,which,however,have not been focused in batteries.Herein,two isomers are reported for batteries.As a result,the isomer tetrathiafulvalene(TTF)could store two monovalent anions reversibly,deriving an average discharge voltage of 1.05 V and a specific capacity of 220 mAh g−1 at a current density of 2 C.On the other hand,the other isomer tetrathianaphthalene could only reversibly store one monovalent anion and upon further oxidation,it would undergo an irreversible solid-state molecular rearrangement to TTF.The molecular rearrangement was confirmed by electrochemical performances,X-ray diffraction patterns,nuclear magnetic resonance spectra,and 1H detected heteronuclear multiple bond correlation spectra.These results suggested the small structural change could lead to a big difference in anion storage,and we hope this work will stimulate more attention to the structural design for boosting the performance of organic batteries. 展开更多
关键词 Zinc-organic batteries ISOMERS Solid-state molecular rearrangement Anion storage P-type organic electrode materials
下载PDF
Understanding of the charge storage mechanism of MnO_(2)-based aqueous zinc-ion batteries:Reaction processes and regulation strategies 被引量:4
5
作者 Nan Zhang Yu-Rui Ji +3 位作者 Jian-Cang Wang Peng-Fei Wang Yan-Rong Zhu Ting-Feng Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期423-463,I0010,共42页
Though secondary aqueous Zn ion batteries(AZIBs)have been received broad concern in recent years,the development of suitable cathode materials of AZIBs is still a big challenge.The MnO_(2) has been deemed as one of mo... Though secondary aqueous Zn ion batteries(AZIBs)have been received broad concern in recent years,the development of suitable cathode materials of AZIBs is still a big challenge.The MnO_(2) has been deemed as one of most hopeful cathode materials of AZIBs on account of some extraordinary merits,such as richly natural resources,low toxicity,high discharge potential,and large theoretical capacity.However,the crystal structure diversity of MnO_(2) results in an obvious various of charge storage mechanisms,which can cause great differences in electrochemical performance.Furthermore,several challenges,including intrinsic poor conductivity,dissolution of manganese and sluggish ion transport dynamics should be conquered before real practice.This work focuses on the reaction mechanisms and recent progress of MnO_(2)-based materials of AZIBs.In this review,a detailed review of the reaction mechanisms and optimal ways for enhancing electrochemical performance for MnO_(2)-based materials is proposed.At last,a number of viewpoints on challenges,future development direction,and foreground of MnO_(2)-based materials of aqueous zinc ions batteries are put forward.This review clarifies reaction mechanism of MnO_(2)-based materials of AZIBs,and offers a new perspective for the future invention in MnO_(2)-based cathode materials,thus accelerate the extensive development and commercialization practice of aqueous zinc ions batteries. 展开更多
关键词 Aqueous zinc-ion battery MnO_(2) Charge storage mechanism Optimization strategy
下载PDF
A dual redox-active and robust polymer enables ultrafast and durable proton-storage capability
6
作者 Jiachen Yang Jing Jin +4 位作者 Peipei Zhang Xinyue Zhang Jun Yang Junwei Lang Minjie Shi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期237-243,共7页
Aqueous proton batteries(APBs) offer a viable and attractive option in the field of affordable and sustainable energy solutions.Organic polymers are highly favored due to their environmentally friendly manufacturabili... Aqueous proton batteries(APBs) offer a viable and attractive option in the field of affordable and sustainable energy solutions.Organic polymers are highly favored due to their environmentally friendly manufacturability and malleable molecular configurations,making them suitable materials for constructing APB electrodes.Nonetheless,their currently limited capacity for proton-associated redox reactions poses a challenge to the widespread usage.Herein,we have developed a highly redox-active organic polymer(PTA) tailored for APB applications.The inclusion of dual redox-active moieties in the extended nconjugated frameworks not only enhances the redox activity and refines the electronic properties,but also ensures the high structural integrity of the PTA polymer.When used as an electrode,the PTA polymer has a notable ability to store protons,with a large capacity of 213.99 mA h g^(-1) at 1 A g^(-1) and exceptional long-term stability,as evidenced by retaining 94.6% of its initial capacity after 20,000 cycles.In situ techniques alongside theoretical calculations have unveiled efficient redox processes occurring at C=N and C=O redox-active sites within the PTA electrode upon proton uptake/removal.Furthermore,a softpackage APB device has been assembled with impressive electrochemical behaviors and excellent operational lifespan,accentuating its significant promise for real-world deployment. 展开更多
关键词 Aqueous battery Electrode material Organic polymer Electrochemical mechanism Proton storage
下载PDF
Delving into the dissimilarities in electrochemical performance and underlying mechanisms for sodium and potassium ion storage in N-doped carbon-encapsulated metallic Cu_(2)Se nanocubes
7
作者 Xinyu Wang Yanan Xu +4 位作者 Xiaofeng Liu Lei Tan Huaiqiang Gu Xin Du Dan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期336-347,I0008,共13页
The large volumetric variations experienced by metal selenides within conversion reaction result in inferior rate capability and cycling stability,ultimately hindering the achievement of superior electrochemical perfo... The large volumetric variations experienced by metal selenides within conversion reaction result in inferior rate capability and cycling stability,ultimately hindering the achievement of superior electrochemical performance.Herein,metallic Cu_(2)Se encapsulated with N-doped carbon(Cu_(2)Se@NC)was prepared using Cu_(2)O nanocubes as templates through a combination of dopamine polymerization and hightemperature selenization.The unique nanocubic structure and uniform N-doped carbon coating could shorten the ion transport distance,accelerate electron/charge diffusion,and suppress volume variation,ultimately ensuring Cu_(2)Se@NC with excellent electrochemical performance in sodium ion batteries(SIBs)and potassium ion batteries(PIBs).The composite exhibited excellent rate performance(187.7 mA h g^(-1)at 50 A g^(-1)in SIBs and 179.4 mA h g^(-1)at 5 A g^(-1)in PIBs)and cyclic stability(246,8 mA h g^(-1)at 10 A g^(-1)in SIBs over 2500 cycles).The reaction mechanism of intercalation combined with conversion in both SIBs and PIBs was disclosed by in situ X-ray diffraction(XRD)and ex situ transmission electron microscope(TEM).In particular,the final products in PIBs of K_(2)Se and K_(2)Se_(3)species were determined after discharging,which is different from that in SIBs with the final species of Na_(2)Se.The density functional theory calculation showed that carbon induces strong coupling and charge interactions with Cu_(2)Se,leading to the introduction of built-in electric field on heterojunction to improve electron mobility.Significantly,the theoretical calculations discovered that the underlying cause for the relatively superior rate capability in SIBs to that in PIBs is the agile Na~+diffusion with low energy barrier and moderate adsorption energy.These findings offer theoretical support for in-depth understanding of the performance differences of Cu-based materials in different ion storage systems. 展开更多
关键词 Cu_(2)Se nanocubes DFT calculations Ion storage mechanism Potassium ion batteries Sodium ion batteries
下载PDF
Synergistically constructed lamination-like network of redox-active polyimide and MXene via π-π interactions for aqueous NH_(4)^(+) storage
8
作者 Jing He Hongye Xuan +5 位作者 Jing Jin Ke Yu Changyao Liyang Lintong Hu Minjie Shi Chao Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期217-224,共8页
As a nonmetallic charge carrier,ammonium ion(NH_(4)^(+))has garnered significant attention in the construction of aqueous batteries due to its advantages of low molar mass,small hydration size and rapid diffusion in a... As a nonmetallic charge carrier,ammonium ion(NH_(4)^(+))has garnered significant attention in the construction of aqueous batteries due to its advantages of low molar mass,small hydration size and rapid diffusion in aqueous solutions.Polymers are a kind of potential electro-active materials for aqueous NH_(4)^(+)storage.However,traditional polymer electrodes are typically created by covering the bulky collectors with excessive additives,which could lead to low volume capacity and unsatisfactory stability.Herein,a nanoparticle-like polyimide(PI)was synthesized and then combined with MXene nanosheets to synergistically construct an additive-free and self-standing PI@MXene composite electrode.Significantly,the redox-active PI nanoparticles are enclosed between conductive MXene flakes to create a 3D lamination-like network that promotes electron transmission,while theπ-πinteractions existing between PI and MXene contribute to the enhanced structural integrity and stability within the composite electrode.As such,it delivers superior aqueous NH_(4)^(+)storage behaviors in terms of a notable specific capacity of 110.7 mA·h·cm^(–3) and a long lifespan with only 0.0064%drop each cycle.Furthermore,in-situ Raman and UV–Vis examinations provide evidence of reversible and stable redox mechanism of the PI@MXene composite electrode during NH_(4)^(+)uptake/removal,highlighting its significance in the area of electrochemical energy storage. 展开更多
关键词 Synergetic coupling Composite materials POLYIMIDE Energy storage Aqueous ammonium ion batteries
下载PDF
The Correlation between the Power Quality Indicators and Entropy Production Characteristics of Wind Power+Energy Storage Systems
9
作者 Caifeng Wen Boxin Zhang +3 位作者 Yuanjun Dai Wenxin Wang Wanbing Xie Qian Du 《Energy Engineering》 EI 2024年第10期2961-2979,共19页
Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different e... Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production. 展开更多
关键词 Wind power system entropy production system losses power quality indexes battery energy storage
下载PDF
An Investigation of Battery Energy Storage Aided Wind-Coal Integrated Energy System 被引量:1
10
作者 Enhui Sun Jiahao Shi +3 位作者 Lei Zhang Hongfu Ji Qian Zhang Yongyi Li 《Energy Engineering》 EI 2023年第7期1583-1602,共20页
This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are establi... This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are established.According to the simulation results,the reasons why the wind-coal combined power supply is difficult to meet the grid-side demand are revealedthrough scenario analysis.Basedon thewind-coal combinedoperation,a wind-coalstorage integrated energy system was proposed by adding lithium-iron phosphate battery energy storage system(LIPBESS)to adjust the load of the system.According to the four load adjustment scenarios of grid-side instructions of the wind-coal system,the difficulty of load adjustment in each scenario is analyzed.Based on the priority degree of LIPBESS charge/discharge in four scenarios at different time periods,the operation mode of two charges and two discharges per day was developed.Based on the independent operation level of coal-fired power,after the addition of LIPBESS(5.5 MWh),the average qualified rate of multi-power operation in March and June reached the level of independent operation of coal-fired power,while the average qualified rate of the remaining months was only 5.4%different from that of independent operation of coal-fired power.Compared with the wind storage mode,the energy storage capacity and investment cost of wind-coal-storage integrated energy system are reduced by 54.2%and 53.7%,respectively. 展开更多
关键词 Wind power lithium-iron phosphate battery energy storage system coal-fired power integrated energy system
下载PDF
ZnO-Embedded Expanded Graphite Composite Anodes with Controlled Charge Storage Mechanism Enabling Operation of Lithium-Ion Batteries at Ultra-Low Temperatures 被引量:1
11
作者 Kun Ryu Michael J.Lee +1 位作者 Kyungbin Lee Seung Woo Lee 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期31-39,共9页
As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered... As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered by the poor diffusion kinetics of Li ions(Li^(+)).Here,zinc oxide(ZnO) nanoparticles are incorporated into the expanded graphite to improve Li^(+)diffusion kinetics,resulting in a significant improvement in lowtemperature performance.The ZnO-embedded expanded graphite anodes are investigated with different amounts of ZnO to establish the structurecharge storage mechanism-performance relationship with a focus on lowtemperature applications.Electrochemical analysis reveals that the ZnOembedded expanded graphite anode with nano-sized ZnO maintains a large portion of the diffusion-controlled charge storage mechanism at an ultra-low temperature of-50℃ Due to this significantly enhanced Li^(+)diffusion rate,a full cell with the ZnO-embedded expanded graphite anode and a LiNi_(0.88)Co_(0.09)Al_(0.03)O_(2)cathode delivers high capacities of 176 mAh g^(-1)at20℃ and 86 mAh g^(-1)at-50℃ at a high rate of 1 C.The outstanding low-temperature performance of the composite anode by improving the Li^(+)diffusion kinetics provides important scientific insights into the fundamental design principles of anodes for low-temperature Li-ion battery operation. 展开更多
关键词 diffusive and capacitive charge storages expanded graphite composites anode lithium-ion battery low-temperature operation transition metal oxide
下载PDF
A Two-Layer Fuzzy Control Strategy for the Participation of Energy Storage Battery Systems in Grid Frequency Regulation 被引量:1
12
作者 Wei Chen Na Sun +2 位作者 Zhicheng Ma Wenfei Liu Haiying Dong 《Energy Engineering》 EI 2023年第6期1445-1464,共20页
To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control stra... To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control strategy is proposed for the participation of the energy storage battery system in FM.Firstly,considering the coordination of FM units responding to automatic power generation control commands,a comprehensive allocation strategy of two signals under automatic power generation control commands is proposed to give full play to the advantages of two FM signals while enabling better coordination of two FM units responding to FM commands;secondly,based on the grid FM demand and battery FM capability,a double-layer fuzzy control strategy is proposed for FM units responding to automatic power generation control commands in a coordinated manner under dual-signal allocation mode to precisely allocate the power output depth of FM units,which can control the fluctuation of frequency deviation within a smaller range at a faster speed while maintaining the battery charge state;finally,the proposed Finally,the proposed control strategy is simulated and verified inMatlab/Simulink.The results show that the proposed control strategy can control the frequency deviation within a smaller range in a shorter time,better stabilize the fluctuation of the battery charge level,and improve the utilization of the FM unit. 展开更多
关键词 battery energy storage secondary FM signal distribution mode charge state two-layer fuzzy control
下载PDF
Photoinduced Cu^(+)/Cu^(2+)interconversion for enhancing energy conversion and storage performances of CuO based Li-ion battery
13
作者 Qiuman Zhang Meng Wei +7 位作者 Qianwen Dong Qiongzhi Gao Xin Cai Shengsen Zhang Teng Yuan Feng Peng Yueping Fang Siyuan Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期83-91,共9页
Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper... Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper oxide(CuO)is one of the most popular candidates in both LIBs and photocatalysis.While CuO based PA-LIBs have never been reported yet.Herein,one-dimensional(1D)CuO nanowire arrays in situ grown on a three-dimensional(3D)copper foam support were employed as dualfunctional photoanode for both‘solar-to-electricity’and‘electricity-to-chemical’energy conversion in the PA-LIBs.It is found that light energy can be indeed stored and converted into electrical energy through the assembled CuO based PA-LIBs.Without external power source,the photo conversion efficiency of CuO based photocell reaches about 0.34%.Impressively,at a high current density of 4000 m A g^(-1),photoassisted discharge and charge specific capacity of CuO based PA-LIBs respectively receive 64.01%and 60.35%enhancement compared with the net electric charging and discharging process.Mechanism investigation reveals that photogenerated charges from CuO promote the interconversion between Cu^(2+)and Cu^(+)during the discharging/charging process,thus forcing the lithium storage reaction more completely and increasing the specific capacity of the PA-LIBs.This work can provide a general principle for the development of other high-efficient semiconductor-based PA-LIBs. 展开更多
关键词 Li-ion batteries Energy conversion and storage Photo rechargeable Electrochemistry Copper oxide
下载PDF
Methylene blue intercalated vanadium oxide with synergistic energy storage mechanism for highly efficient aqueous zinc ion batteries
14
作者 Yunxiao Tong Ying Zang +8 位作者 Senda Su Yinggui Zhang Junzhuo Fang Yongqing Yang Xiaoman Li Xiang Wu Fuming Chen Jianhua Hou Min Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期269-279,I0007,共12页
With the rise of aqueous multivalent rechargeable batteries,inorganic-organic hybrid cathodes have attracted more and more attention due to the complement of each other’s advantages.Herein,a strategy of designing hyb... With the rise of aqueous multivalent rechargeable batteries,inorganic-organic hybrid cathodes have attracted more and more attention due to the complement of each other’s advantages.Herein,a strategy of designing hybrid cathode is adopted for high efficient aqueous zinc-ion batteries(AZIBs).Methylene blue(MB)intercalated vanadium oxide(HVO-MB)was synthesized through sol-gel and ion exchange method.Compared with other organic-inorganic intercalation cathode,not only can the MB intercalation enlarge the HVO interlayer spacing to improve ion mobility,but also provide coordination reactions with the Zn^(2+)to enhance the intrinsic electrochemical reaction kinetics of the hybrid electrode.As a key component for the cathode of AZIBs,HVO-MB contributes a specific capacity of 418 mA h g^(-1) at 0.1 A g^(-1),high rate capability(243 mA h g^(-1) at 5 A g^(-1))and extraordinary stability(88%of capacity retention after 2000cycles at a high current density of 5 A g^(-1))in 3 M Zn(CF_(3)SO_(3))_(2) aqueous electrolyte.The electrochemical kinetics reveals HVO-MB characterized with large pseudocapacitance charge storage behavior due to the fast ion migration provided by the coordination reaction and expanded interlayer distance.Furthermore,a mixed energy storage mechanism involving Zn^(2+)insertion and coordination reaction is confirmed by various ex-situ characterization.Thus,this work opens up a new path for constructing the high performance cathode of AZIBs through organic-inorganic hybridization. 展开更多
关键词 Synergistic energy storage mechanism Aqueous zinc-ion batteries Vanadium oxides Pre-intercalation strategy Methylene blue
下载PDF
High-Resolution Mass Spectroscopy for Revealing the Charge Storage Mechanism in Batteries: Oxamide Materials as an Example
15
作者 Chenyang Zhang Yuan Chen +7 位作者 Kun Fan Guoqun Zhang Jincheng Zou Huichao Dai Yanbo Gao Xiaobo Wang Minglei Mao Chengliang Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期195-202,共8页
The pursuit of high-performance electrode materials is highly desired to meet the demand of batteries with high energy and power density.However,a deep understanding of the charge storage mechanism is always challengi... The pursuit of high-performance electrode materials is highly desired to meet the demand of batteries with high energy and power density.However,a deep understanding of the charge storage mechanism is always challenging,which limits the development of advanced electrode materials.Herein,high-resolution mass spectroscopy(HR-MS)is employed to detect the evolution of organic electrode materials during the redox process and reveal the charge storage mechanism,by using small molecular oxamides as an example,which have ortho-carbonyls and are therefore potential electrochemical active materials for batteries.The HR-MS results adequately proved that the oxamides could reversibly store lithium ions in the voltage window of 1.5–3.8 V.Upon deeper reduction,the oxamides would decompose due to the cleavage of the C–N bonds in oxamide structures,which could be proved by the fragments detected by HR-MS,^(1)H NMR,and the generation of NH_(3)after the reduction of oxamide by Li.This work provides a strategy to deeply understand the charge storage mechanism of organic electrode materials and will stimulate the further development of characterization techniques to reveal the charge storage mechanism for developing high-performance electrode materials. 展开更多
关键词 charge storage mechanism high-resolution mass spectroscopy organic batteries organic electrodes oxamides
下载PDF
Intrinsic Self-Healing Chemistry for Next-Generation Flexible Energy Storage Devices 被引量:8
16
作者 Xin Wan Tiansheng Mu Geping Yin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期136-164,共29页
The booming wearable/portable electronic devices industry has stimulated the progress of supporting flexible energy storage devices.Excellent performance of flexible devices not only requires the component units of ea... The booming wearable/portable electronic devices industry has stimulated the progress of supporting flexible energy storage devices.Excellent performance of flexible devices not only requires the component units of each device to maintain the original performance under external forces,but also demands the overall device to be flexible in response to external fields.However,flexible energy storage devices inevitably occur mechanical damages(extrusion,impact,vibration)/electrical damages(overcharge,over-discharge,external short circuit)during longterm complex deformation conditions,causing serious performance degradation and safety risks.Inspired by the healing phenomenon of nature,endowing energy storage devices with self-healing capability has become a promising strategy to effectively improve the durability and functionality of devices.Herein,this review systematically summarizes the latest progress in intrinsic self-healing chemistry for energy storage devices.Firstly,the main intrinsic self-healing mechanism is introduced.Then,the research situation of electrodes,electrolytes,artificial interface layers and integrated devices based on intrinsic self-healing and advanced characterization technology is reviewed.Finally,the current challenges and perspective are provided.We believe this critical review will contribute to the development of intrinsic self-healing chemistry in the flexible energy storage field. 展开更多
关键词 Flexible energy storage Intrinsic self-healing chemistry Lithium-ion battery Supercapacitor Advanced characterizations
下载PDF
Application and Progress of Confinement Synthesis Strategy in Electrochemical Energy Storage 被引量:2
17
作者 Yike Xu Zhenyu Liu +3 位作者 Wenhua Cong Jingwen Zhao Xuguang Liu Meiling Wang 《Transactions of Tianjin University》 EI CAS 2023年第2期151-187,共37页
Designing high-performance nanostructured electrode materials is the current core of electrochemical energy storage devices.Multi-scaled nanomaterials have triggered considerable interest because they effectively comb... Designing high-performance nanostructured electrode materials is the current core of electrochemical energy storage devices.Multi-scaled nanomaterials have triggered considerable interest because they effectively combine a library of advantages of each component on different scales for energy storage.However,serious aggregation,structural degradation,and even poor stability of nanomaterials are well-known issues during electrochemically driven volume expansion/contraction processes.The confinement strategy provides a new route to construct controllable internal void spaces to avoid the intrinsic volume effects of nanomaterials during the reaction or charge/discharge process.Herein,we discuss the confinement strategies and methods for energy storage-related electrode materials with a one-dimensional channel,two-dimensional interlayer,and three-dimensional space as reaction environments.For each confinement environment,the correlation between the confinement condition/structure and the behavioral characteristics of energy storage devices in the scope of metal-ion batteries(e.g.,Li-ion,Na-ion,K-ion,and Mg-ion batteries),Li-S batteries(LSBs),Zn-air batteries(ZIBs),and supercapacitors.Finally,we discussed the challenges and perspectives on future nanomaterial confinement strategies for electrochemical energy storage devices. 展开更多
关键词 Confi nement Electrochemical energy storage NANOMATERIALS BATTERIES SUPERCAPACITORS
下载PDF
Carbon materials toward efficient potassium storage:Rational design,performance evaluation and potassium storage mechanism 被引量:2
18
作者 Daping Qiu Yanglong Hou 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期115-140,共26页
Potassium-ion batteries(PIBs)are potential“Beyond Li-ion Batteries”candidates for their resource advantage and low standard electrode potential.To date,the research on PIBs is in its early stages,the most urgent tas... Potassium-ion batteries(PIBs)are potential“Beyond Li-ion Batteries”candidates for their resource advantage and low standard electrode potential.To date,the research on PIBs is in its early stages,the most urgent task is to develop high-performance electrode materials and reveal their potassium storage mechanism.For PIBs anode materials,carbon with tunable microstructure,excellent electrochemical activity,nontoxicity and low price is considered as one of the most promising anode materials for commercialization.Although some breakthrough works have emerged,the overall electrochemical performance of the reported carbon anode is still far away from practical application.Herein,we carry out a comprehensive overview of PIBs carbon anode in terms of three aspects of rational design of structure,performance evaluation criteria and characterization of potassium storage mechanism.First,the regulation mechanism of key structural features of carbon anode on its potassium storage performance and the representative structural regulation strategies are introduced.Then,in view of the undefined performance evaluation criteria of PIBs carbon anode,a reference principle for evaluating the potassium storage performance of carbon anode is proposed.Finally,the advanced characterization techniques for the potassium storage mechanism of carbon anode are summarize.This review aims to provide guidance for the development of practical PIBs anode. 展开更多
关键词 Potassium-ion batteries Carbon anode Structural engineering Performance evaluation Potassium storage mechanism
下载PDF
Recent advances in 3D printed electrode materials for electrochemical energy storage devices 被引量:1
19
作者 Suhail Mubarak Duraisami Dhamodharan Hun-Soo Byun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期272-312,I0008,共42页
Electrochemical energy storage(EES)systems like batteries and supercapacitors are becoming the key power sources for attempts to change the energy dependency from inadequate fossil fuels to sustainable and renewable r... Electrochemical energy storage(EES)systems like batteries and supercapacitors are becoming the key power sources for attempts to change the energy dependency from inadequate fossil fuels to sustainable and renewable resources.Electrochemical energy storage devices(EESDs)operate efficiently as a result of the construction and assemblage of electrodes and electrolytes with appropriate structures and effective materials.Conventional manufacturing procedures have restrictions on regulating the morphology and architecture of the electrodes,which would influence the performance of the devices.3D printing(3DP)is an advanced manufacturing technology combining computer-aided design and has been recognised as an artistic method of fabricating different fragments of energy storage devices with its ability to precisely control the geometry,porosity,and morphology with improved specific energy and power densities.The capacity to create mathematically challenging shape or configuration designs and high-aspect-ratio 3D architectures makes 3D printing technology unique in its benefits.Nevertheless,the control settings,interactive manufacturing processes,and protracted post-treatments will affect the reproducibility of the printed components.More intelligent software,sophisticated control systems,high-grade industrial equipment,and post-treatment-free methods are necessary to develop.3D printed(3DPd)EESDs necessitate dynamic printable materials and composites that are influenced by performance criteria and fundamental electrochemistry.Herein,we review the recent advances in 3DPd electrodes for EES applications.The emphasis is on printable material synthesis,3DP techniques,and the electrochemical performance of printed electrodes.For the fabrication of electrodes,we concentrate on major 3DP technologies such as direct ink writing(DIW),inkjet printing(IJP),fused deposition modelling(FDM),and stereolithography3DP(SLA).The benefits and drawbacks of each 3DP technology are extensively discussed.We provide an outlook on the integration of synthesis of emerging nanomaterials and fabrication of complex structures from micro to macroscale to construct highly effective electrodes for the EESDs. 展开更多
关键词 3D printing 3D printed electrodes Electrochemical energy storage Lithium-ion battery Zinc-ion battery SUPERCAPACITOR
下载PDF
Nano-single-crystal-constructed submicron MnCO_(3) hollow spindles enabled by solid precursor transition combined Ostwald ripening in situ on graphene toward exceptional interfacial and capacitive lithium storage 被引量:2
20
作者 Jiamin Fei Shiqiang Zhao +6 位作者 Xiaoxu Bo Furong Xie Guanghui Li Ebrahim-Alkhalil MAAhmed Qingcheng Zhang Huile Jin Zhiqun Lin 《Carbon Energy》 SCIE CSCD 2023年第8期98-113,共16页
Hollow structuring has been identified as an effective strategy to enhance the cycling stability of electrodes for rechargeable batteries due to the outstanding volume expansion buffering efficiency,which motivates ar... Hollow structuring has been identified as an effective strategy to enhance the cycling stability of electrodes for rechargeable batteries due to the outstanding volume expansion buffering efficiency,which motivates ardent pursuing on the synthetic approaches of hollow materials.Herein,an intriguing route,combining solid precursor transition and Ostwald ripening(SPTOR),is developed to craft nano single-crystal(SC)-constructed MnCO_(3) submicron hollow spindles homogeneously encapsulated in a reduced graphene oxide matrix(MnCO_(3) SMHSs/rGO).It is noteworthy that the H-bonding interaction between Mn_(3)O_(4) nanoparticles(NPs)and oxygen-containing groups on GO promotes uniform anchoring of Mn_(3)O_(4) NPs on GO,mild reductant ascorbic acid triggers the progressive solid-to-solid transition from Mn_(3)O_(4) NPs to MnCO_(3) submicron solid spindles(SMSSs)in situ on GO,and the Ostwald ripening process induces the gradual dissolution of interior polycrystals of MnCO_(3) SMSSs and subsequent recrystallization on surface SCs of MnCO_(3) SMHSs.Remarkably,MnCO_(3) SMHSs/rGO delivers a 500th lithium storage capacity of 2023 mAh g^(-1) at 1000 mAg^(-1),which is 10 times higher than that of MnCO_(3) microspheres/rGO fabricated from a conventional Mn^(2+)salt precursor(202 mAh g^(-1)).The ultrahigh capacity and ultralong lifespan of MnCO_(3) SMHSs/rGO can be primarily attributed to the superior reaction kinetics and reversibility combined with exceptional interfacial and capacitive lithium storage capability,enabled by the fast ion/electron transfer,large specific surface area,and robust electrode pulverization inhibition efficacy.Moreover,fascinating in-depth lithium storage reactions of MnCO_(3) are observed such as the oxidation of Mn^(2+)in MnCO_(3) to Mn^(3+)in charge process after long-term cycles and the further lithiation of Li_(2)CO_(3) in discharge process.As such,the Carbon Energy.SPTOR approach may represent a viable strategy for crafting various hollow functional materials with metastable nanomaterials as precursors. 展开更多
关键词 hollow structure interfacial and capacitive lithium storage lithium-ion battery MnCO_(3) Ostwald ripening solid precursor transition
下载PDF
上一页 1 2 246 下一页 到第
使用帮助 返回顶部