Polymer blends of cold water soluble starches (amylose or amylopectin soluble starch) with gelatin were prepared using solvent casting method. The solid state miscibility and polymer-polymer interactions between the c...Polymer blends of cold water soluble starches (amylose or amylopectin soluble starch) with gelatin were prepared using solvent casting method. The solid state miscibility and polymer-polymer interactions between the constituent polymers were studied by fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorirmetry (DSC), light optical microscopy (OP) and scanning electron microscopy (SEM), whereas the thermal stability of the blends was studied by thermogravimetric analysis (TGA). Furthermore, tensile and water vapor barrier properties of the blends were assessed. The obtained results exhibited that gelatin was more miscible with amylose soluble starch than with amylopectin soluble starch. Moreover, enhancing mechanical and water barrier properties of amylose soluble starch/gelatin blends were more pronounced than those of amylopectin soluble starch/gelatin blends. Generally, tensile strength (TS) and Elongation percentage (E) of the blend films were found to be gradually increased with increasing the proportion of gelatin. Nevertheless, increasing starch proportion was in favor of decreasing water vapor permeability (WVP). At equal proportions of starch and gelatin (1:1), TS was raised up to 8.69 MPa for amylose soluble starch/gelatin blend films while it raised up to 4.96 MPa for amylopectin soluble starch/gelatin blend films, and so on E was increased to its maximum by ~179.6% for soluble amylose starch/gelatin blends while it was increased to ~114.5% for amylopectin soluble starch/gelatin blends. On the other hand, WVP was significantly decreased to be 6.46 and 12.09 g·mm/m2·day·kPa for blends of amylose and amylopectin soluble?starches, respectively.展开更多
As a low cost non-staple food resource,the high-viscosity paste and poor gel-forming ability of tapioca starch limit its industrial application.Herein,molasses hydrocolloids that is a by-product of the sugar refining ...As a low cost non-staple food resource,the high-viscosity paste and poor gel-forming ability of tapioca starch limit its industrial application.Herein,molasses hydrocolloids that is a by-product of the sugar refining process was applied as a blending modifier to reduce the viscosity of tapioca starch paste.The test results of paste and rheological properties show that molasses hydrocolloids exhibited a good physical viscosity-reducing effect on tapioca starch paste.The irregular network structure and high K^(+)/Ca^(2+)ion contents of molasses hydrocolloids exerted wrapping,adhesion,barrier,and hydration effects on starch,leading to the reduction of viscosity.The scanning electron microscope images and textural analysis demonstrated that this strategy also improve the structure of tapioca starch gel and enhanced its puncture strength by 75.46%.This work shows the great potential of molasses hydrocolloids as a lowcost and desirable material for the viscosity reduction of tapioca starch.展开更多
Bio-degradable cassava starch-based adhesives were produced from chemically gelatinized starch formulations. The varying combinations of process parameters applied include: concentration of gelatinization modifier, ma...Bio-degradable cassava starch-based adhesives were produced from chemically gelatinized starch formulations. The varying combinations of process parameters applied include: concentration of gelatinization modifier, mass % borax/starch, and temperature of reaction mixture. The physico-chemical parameters for characterizing the adhesive samples were viscosity, density, pH and bonding strength. The effects of the variation of process parameters on the quality of the adhesives were assessed using response surface (central composite) designs with 2 factors, to relate the highest adhesive quality with the optimal combination of process factors. The adhesives produced using HCl as the gelatinization modifier were of a higher quality than those produced using NaOH with one of the most important quality assessment parameters which is the bond strength being 22.31 kPa at 0.01 M and 20% mass borax/starch and 11.60 kPa at 0.01 M and 8% mass borax/starch for HCl and NaOH respectively. The experimental results demonstrated that the optimal temperature for the production of the adhesive was 85˚C.展开更多
文摘Polymer blends of cold water soluble starches (amylose or amylopectin soluble starch) with gelatin were prepared using solvent casting method. The solid state miscibility and polymer-polymer interactions between the constituent polymers were studied by fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorirmetry (DSC), light optical microscopy (OP) and scanning electron microscopy (SEM), whereas the thermal stability of the blends was studied by thermogravimetric analysis (TGA). Furthermore, tensile and water vapor barrier properties of the blends were assessed. The obtained results exhibited that gelatin was more miscible with amylose soluble starch than with amylopectin soluble starch. Moreover, enhancing mechanical and water barrier properties of amylose soluble starch/gelatin blends were more pronounced than those of amylopectin soluble starch/gelatin blends. Generally, tensile strength (TS) and Elongation percentage (E) of the blend films were found to be gradually increased with increasing the proportion of gelatin. Nevertheless, increasing starch proportion was in favor of decreasing water vapor permeability (WVP). At equal proportions of starch and gelatin (1:1), TS was raised up to 8.69 MPa for amylose soluble starch/gelatin blend films while it raised up to 4.96 MPa for amylopectin soluble starch/gelatin blend films, and so on E was increased to its maximum by ~179.6% for soluble amylose starch/gelatin blends while it was increased to ~114.5% for amylopectin soluble starch/gelatin blends. On the other hand, WVP was significantly decreased to be 6.46 and 12.09 g·mm/m2·day·kPa for blends of amylose and amylopectin soluble?starches, respectively.
基金supported by the National Natural Science Foundation of China(U21B2097)the National Key Research and Development Program of China(2018YFA0901500)the Jiangsu Postdoctoral Research Foundation(2019K242)。
文摘As a low cost non-staple food resource,the high-viscosity paste and poor gel-forming ability of tapioca starch limit its industrial application.Herein,molasses hydrocolloids that is a by-product of the sugar refining process was applied as a blending modifier to reduce the viscosity of tapioca starch paste.The test results of paste and rheological properties show that molasses hydrocolloids exhibited a good physical viscosity-reducing effect on tapioca starch paste.The irregular network structure and high K^(+)/Ca^(2+)ion contents of molasses hydrocolloids exerted wrapping,adhesion,barrier,and hydration effects on starch,leading to the reduction of viscosity.The scanning electron microscope images and textural analysis demonstrated that this strategy also improve the structure of tapioca starch gel and enhanced its puncture strength by 75.46%.This work shows the great potential of molasses hydrocolloids as a lowcost and desirable material for the viscosity reduction of tapioca starch.
文摘Bio-degradable cassava starch-based adhesives were produced from chemically gelatinized starch formulations. The varying combinations of process parameters applied include: concentration of gelatinization modifier, mass % borax/starch, and temperature of reaction mixture. The physico-chemical parameters for characterizing the adhesive samples were viscosity, density, pH and bonding strength. The effects of the variation of process parameters on the quality of the adhesives were assessed using response surface (central composite) designs with 2 factors, to relate the highest adhesive quality with the optimal combination of process factors. The adhesives produced using HCl as the gelatinization modifier were of a higher quality than those produced using NaOH with one of the most important quality assessment parameters which is the bond strength being 22.31 kPa at 0.01 M and 20% mass borax/starch and 11.60 kPa at 0.01 M and 8% mass borax/starch for HCl and NaOH respectively. The experimental results demonstrated that the optimal temperature for the production of the adhesive was 85˚C.