Mesoporous Ti O2/Carbon beads have been prepared via a facile impregnation-carbonization approach, in which a porous anion-exchange resin and K2 Ti O(C2O4)2were used as hard carbon and titanium source, respectively.Ch...Mesoporous Ti O2/Carbon beads have been prepared via a facile impregnation-carbonization approach, in which a porous anion-exchange resin and K2 Ti O(C2O4)2were used as hard carbon and titanium source, respectively.Characterization results reveal that the self-assembled composites have disordered mesostructure, uniform mesopores,large pore volumes, and high surface areas. The mesopore walls are composed of amorphous carbon, well-dispersed and confined anatase or rutile nanoparticles. Some anatase phase of Ti O2 was transformed to rutile phase via an increase of carbonization temperature or repeated impregnation of the resin with Ti O(C2O4)22-species. X-ray photoelectron spectroscopy, carbon, hydrogen, and nitrogen element analysis, and thermal gravity analysis results indicate the doping of carbon into the Ti O2 lattice and strong interaction between carbon and Ti O2 nanoparticles. A synergy effect by carbon and Ti O2 in the composites has been discussed herein on the degradation of methyl orange under visible light. The dye removal process involves adsorption of the dye from water by the mesopores in the composites, followed by photodegradation on the separated dye-loaded catalysts. Mesopores allow full access of the dye molecules to the surface of Ti O2 nanoparticles.Importantly, the bead format of such composite enables their straightforward separation from the reaction mixture in their application as a liquid-phase heterogeneous photodegradation catalyst.展开更多
Two types of mesocarbon microbeads(MCMB), one of which was green sphere and the other carbonized at 1000 ℃, were used to modify coal tar pitches, and their influences on the development of carbonaceous mesophase in c...Two types of mesocarbon microbeads(MCMB), one of which was green sphere and the other carbonized at 1000 ℃, were used to modify coal tar pitches, and their influences on the development of carbonaceous mesophase in coal tar pitches were investigated. Optical microscopy was used to observe the changes caused by the additives. The green MCMB could promote the growth of mesophase spheres. When the holding time at the final temperature was prolonged to 100 min, the green MCMB-modified pitch would produce excellent bulk mesophase. Carbonized MCMB prohibited the coalescence of mesophase spheres and was beneficial to forming super large mesophase spheres. In the green MCMB-modified pitch, mesophase spheres grew up using the added MCMB spheres as nuclei, i.e. the green MCMB continued to grow during heat-treatment, which accelerated the formation, growth, and coalescence of mesophase spheres. For carbonized MCMB, their active sites were passivated and they could not continue to grow. These inert spheres could aggregate around the newly-formed mesophase spheres, prohibiting the growth and coalescence of the mesophase spheres.展开更多
Laser welding (LW) becomes one of the most economical high quality joining processes. LW offers the advantage of very controlled heat input resulting in low distortion and the ability to weld heat sensitive components...Laser welding (LW) becomes one of the most economical high quality joining processes. LW offers the advantage of very controlled heat input resulting in low distortion and the ability to weld heat sensitive components. To exploit efficiently the benefits presented by LW, it is necessary to develop an integrated approach to identify and control the welding process variables in order to produce the desired weld characteristics without being forced to use the traditional and fastidious trial and error procedures. The paper presents a study of weld bead geometry characteristics prediction for laser overlap welding of low carbon galvanized steel using 3D numerical modelling and experimental validation. The temperature dependent material properties, metallurgical transformations and enthalpy method constitute the foundation of the proposed modelling approach. An adaptive 3D heat source is adopted to simulate both keyhole and conduction mode of the LW process. The simulations are performed using 3D finite element model on commercial software. The model is used to estimate the weld bead geometry characteristics for various LW parameters, such as laser power, welding speed and laser beam diameter. The calibration and validation of the 3D numerical model are based on experimental data achieved using a 3 kW Nd:Yag laser system, a structured experimental design and confirmed statistical analysis tools. The results reveal that the modelling approach can provide not only a consistent and accurate prediction of the weld characteristics under variable welding parameters and conditions but also a comprehensive and quantitative analysis of process parameters effects on the weld quality. The results show great concordance between predicted and measured values for weld bead geometry characteristics, such as depth of penetration, bead width at the top surface and bead width at the interface between sheets, with an average accuracy greater than 95%.展开更多
Three different types of Polyethylene family, High Density Polyethylene, (HDPE), Low Density polyethylene (LDPE) and Linear Low Density polyethylene (LLDPE) polymers having different molecular weight and density;were ...Three different types of Polyethylene family, High Density Polyethylene, (HDPE), Low Density polyethylene (LDPE) and Linear Low Density polyethylene (LLDPE) polymers having different molecular weight and density;were pyrolyzed in the temperature range of 550°C - 1050°C under H2, N2 and Ar gases. Taguchi Optimization technique was applied to find out the best operating conditions to get maximum yield of carbon nano material (CNM). For Taguchi op- timization, experimental set up was done in two different temperature ranges i.e. 550°C - 750°C and 850°C - 1050°C. CNMs synthesized were characterized by SEM, TEM, Micro Raman and XRD analysis. HDPE was found to yield maximum CNM. Its pyrolysis at 750°C under hydrogen atmosphere for 2h gave carbon nano beads and some carbon nano tubes. Whereas under same conditions at 1050°C more multi wall carbon nano tubes (MWCNT) were produced, with some carbon nano beads. XRD data confirmed the graphitic nature of carbon-nanotube. The intensities of G-band and D-band of Raman spectra suggested that CNM has more defect sites and spectra were similar for CNM obtained in both the temperature ranges. The TGA analysis of CNM obtained at 550°C - 750°C, indicated that they are not amor- phous carbon and CNM obtained at 850°C - 1050°C decomposed at 624°C - 668°C;suggesting that CNT synthesized at this temperature range were more crystalline than what was obtained at the 550°C - 750°C.展开更多
基金supported by Natural Science Foundation of China(21303031,21353004,51472062)Natural Science Foundation of Heilongjiang Province of China(B201010)+2 种基金Fundamental Research Funds for the Central Universities(HIT.IBRSEM.201326)Program for Science&Technology Innovation Talent in Harbin(2013RFQXJ004,2007RFXXG018)China Postdoctoral Science Foundation(2012T50334,20100480991)
文摘Mesoporous Ti O2/Carbon beads have been prepared via a facile impregnation-carbonization approach, in which a porous anion-exchange resin and K2 Ti O(C2O4)2were used as hard carbon and titanium source, respectively.Characterization results reveal that the self-assembled composites have disordered mesostructure, uniform mesopores,large pore volumes, and high surface areas. The mesopore walls are composed of amorphous carbon, well-dispersed and confined anatase or rutile nanoparticles. Some anatase phase of Ti O2 was transformed to rutile phase via an increase of carbonization temperature or repeated impregnation of the resin with Ti O(C2O4)22-species. X-ray photoelectron spectroscopy, carbon, hydrogen, and nitrogen element analysis, and thermal gravity analysis results indicate the doping of carbon into the Ti O2 lattice and strong interaction between carbon and Ti O2 nanoparticles. A synergy effect by carbon and Ti O2 in the composites has been discussed herein on the degradation of methyl orange under visible light. The dye removal process involves adsorption of the dye from water by the mesopores in the composites, followed by photodegradation on the separated dye-loaded catalysts. Mesopores allow full access of the dye molecules to the surface of Ti O2 nanoparticles.Importantly, the bead format of such composite enables their straightforward separation from the reaction mixture in their application as a liquid-phase heterogeneous photodegradation catalyst.
基金National Natural Science Foundation of China (No 50172034)
文摘Two types of mesocarbon microbeads(MCMB), one of which was green sphere and the other carbonized at 1000 ℃, were used to modify coal tar pitches, and their influences on the development of carbonaceous mesophase in coal tar pitches were investigated. Optical microscopy was used to observe the changes caused by the additives. The green MCMB could promote the growth of mesophase spheres. When the holding time at the final temperature was prolonged to 100 min, the green MCMB-modified pitch would produce excellent bulk mesophase. Carbonized MCMB prohibited the coalescence of mesophase spheres and was beneficial to forming super large mesophase spheres. In the green MCMB-modified pitch, mesophase spheres grew up using the added MCMB spheres as nuclei, i.e. the green MCMB continued to grow during heat-treatment, which accelerated the formation, growth, and coalescence of mesophase spheres. For carbonized MCMB, their active sites were passivated and they could not continue to grow. These inert spheres could aggregate around the newly-formed mesophase spheres, prohibiting the growth and coalescence of the mesophase spheres.
文摘Laser welding (LW) becomes one of the most economical high quality joining processes. LW offers the advantage of very controlled heat input resulting in low distortion and the ability to weld heat sensitive components. To exploit efficiently the benefits presented by LW, it is necessary to develop an integrated approach to identify and control the welding process variables in order to produce the desired weld characteristics without being forced to use the traditional and fastidious trial and error procedures. The paper presents a study of weld bead geometry characteristics prediction for laser overlap welding of low carbon galvanized steel using 3D numerical modelling and experimental validation. The temperature dependent material properties, metallurgical transformations and enthalpy method constitute the foundation of the proposed modelling approach. An adaptive 3D heat source is adopted to simulate both keyhole and conduction mode of the LW process. The simulations are performed using 3D finite element model on commercial software. The model is used to estimate the weld bead geometry characteristics for various LW parameters, such as laser power, welding speed and laser beam diameter. The calibration and validation of the 3D numerical model are based on experimental data achieved using a 3 kW Nd:Yag laser system, a structured experimental design and confirmed statistical analysis tools. The results reveal that the modelling approach can provide not only a consistent and accurate prediction of the weld characteristics under variable welding parameters and conditions but also a comprehensive and quantitative analysis of process parameters effects on the weld quality. The results show great concordance between predicted and measured values for weld bead geometry characteristics, such as depth of penetration, bead width at the top surface and bead width at the interface between sheets, with an average accuracy greater than 95%.
文摘Three different types of Polyethylene family, High Density Polyethylene, (HDPE), Low Density polyethylene (LDPE) and Linear Low Density polyethylene (LLDPE) polymers having different molecular weight and density;were pyrolyzed in the temperature range of 550°C - 1050°C under H2, N2 and Ar gases. Taguchi Optimization technique was applied to find out the best operating conditions to get maximum yield of carbon nano material (CNM). For Taguchi op- timization, experimental set up was done in two different temperature ranges i.e. 550°C - 750°C and 850°C - 1050°C. CNMs synthesized were characterized by SEM, TEM, Micro Raman and XRD analysis. HDPE was found to yield maximum CNM. Its pyrolysis at 750°C under hydrogen atmosphere for 2h gave carbon nano beads and some carbon nano tubes. Whereas under same conditions at 1050°C more multi wall carbon nano tubes (MWCNT) were produced, with some carbon nano beads. XRD data confirmed the graphitic nature of carbon-nanotube. The intensities of G-band and D-band of Raman spectra suggested that CNM has more defect sites and spectra were similar for CNM obtained in both the temperature ranges. The TGA analysis of CNM obtained at 550°C - 750°C, indicated that they are not amor- phous carbon and CNM obtained at 850°C - 1050°C decomposed at 624°C - 668°C;suggesting that CNT synthesized at this temperature range were more crystalline than what was obtained at the 550°C - 750°C.