<正> With fractal geometry theory and based on experiments, an analysis of fractal geometry behavior of gelation of macromolecules was carried out. Using the cross-linking copolymerization of styrene-divinylbenz...<正> With fractal geometry theory and based on experiments, an analysis of fractal geometry behavior of gelation of macromolecules was carried out. Using the cross-linking copolymerization of styrene-divinylbenzene (DVB) as an example, through the determinations of the evolution of the molecular weight, size and the dependence of scattering intensity on the angle of macromolecules by employing laser and synchrotron small angle X-ray scattering, respectively, this chemical reaction was described quantitatively, its fractal behavior was analyzed and the fractal dimension was also measured. By avoiding the complex theories on gelation, this approach is based on modern physical techniques and theories to perform the analysis of the behavior of fractal geometry of macromolecular gelation and thus is able to reveal the rules of this kind of complicated gelation more essentially and profoundly.展开更多
基金Project supported by the National Natural Science Foundation of Chinathe Natural Science Foundation of Tianjin Municipalitythe State Key Laboratory of Functional Polymeric Materials for Adsorption and Separation(SKLFPMAS), Nankai University. It is al
文摘<正> With fractal geometry theory and based on experiments, an analysis of fractal geometry behavior of gelation of macromolecules was carried out. Using the cross-linking copolymerization of styrene-divinylbenzene (DVB) as an example, through the determinations of the evolution of the molecular weight, size and the dependence of scattering intensity on the angle of macromolecules by employing laser and synchrotron small angle X-ray scattering, respectively, this chemical reaction was described quantitatively, its fractal behavior was analyzed and the fractal dimension was also measured. By avoiding the complex theories on gelation, this approach is based on modern physical techniques and theories to perform the analysis of the behavior of fractal geometry of macromolecular gelation and thus is able to reveal the rules of this kind of complicated gelation more essentially and profoundly.