期刊文献+
共找到2,924篇文章
< 1 2 147 >
每页显示 20 50 100
Gradient Gene Algorithm: a Fast Optimization Method to MST Problem
1
作者 Zhang Jin bo, Xu Jing wen, Li Yuan xiang State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China 《Wuhan University Journal of Natural Sciences》 CAS 2001年第Z1期535-540,共6页
The extension of Minimum Spanning Tree(MST) problem is an NP hard problem which does not exit a polynomial time algorithm. In this paper, a fast optimization method on MST problem——the Gradient Gene Algorithm is int... The extension of Minimum Spanning Tree(MST) problem is an NP hard problem which does not exit a polynomial time algorithm. In this paper, a fast optimization method on MST problem——the Gradient Gene Algorithm is introduced. Compared with other evolutionary algorithms on MST problem, it is more advanced: firstly, very simple and easy to realize; then, efficient and accurate; finally general on other combination optimization problems. 展开更多
关键词 combination optimization minimum spanning tree problem extension of minimum spanning tree problem gradient gene algorithm
下载PDF
An Improved Image Steganography Security and Capacity Using Ant Colony Algorithm Optimization
2
作者 Zinah Khalid Jasim Jasim Sefer Kurnaz 《Computers, Materials & Continua》 SCIE EI 2024年第9期4643-4662,共20页
This advanced paper presents a new approach to improving image steganography using the Ant Colony Optimization(ACO)algorithm.Image steganography,a technique of embedding hidden information in digital photographs,shoul... This advanced paper presents a new approach to improving image steganography using the Ant Colony Optimization(ACO)algorithm.Image steganography,a technique of embedding hidden information in digital photographs,should ideally achieve the dual purposes of maximum data hiding and maintenance of the integrity of the cover media so that it is least suspect.The contemporary methods of steganography are at best a compromise between these two.In this paper,we present our approach,entitled Ant Colony Optimization(ACO)-Least Significant Bit(LSB),which attempts to optimize the capacity in steganographic embedding.The approach makes use of a grayscale cover image to hide the confidential data with an additional bit pair per byte,both for integrity verification and the file checksumof the secret data.This approach encodes confidential information into four pairs of bits and embeds it within uncompressed grayscale images.The ACO algorithm uses adaptive exploration to select some pixels,maximizing the capacity of data embedding whileminimizing the degradation of visual quality.Pheromone evaporation is introduced through iterations to avoid stagnation in solution refinement.The levels of pheromone are modified to reinforce successful pixel choices.Experimental results obtained through the ACO-LSB method reveal that it clearly improves image steganography capabilities by providing an increase of up to 30%in the embedding capacity compared with traditional approaches;the average Peak Signal to Noise Ratio(PSNR)is 40.5 dB with a Structural Index Similarity(SSIM)of 0.98.The approach also demonstrates very high resistance to detection,cutting down the rate by 20%.Implemented in MATLAB R2023a,the model was tested against one thousand publicly available grayscale images,thus providing robust evidence of its effectiveness. 展开更多
关键词 STEGANOGRAPHY STEGANALYSIS capacity optimization ant colony algorithm
下载PDF
Hybrid Gene Selection Methods for High-Dimensional Lung Cancer Data Using Improved Arithmetic Optimization Algorithm
3
作者 Mutasem K.Alsmadi 《Computers, Materials & Continua》 SCIE EI 2024年第6期5175-5200,共26页
Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression ... Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression microarrays have made it possible to find genetic biomarkers for cancer diagnosis and prediction in a high-throughput manner.Machine Learning(ML)has been widely used to diagnose and classify lung cancer where the performance of ML methods is evaluated to identify the appropriate technique.Identifying and selecting the gene expression patterns can help in lung cancer diagnoses and classification.Normally,microarrays include several genes and may cause confusion or false prediction.Therefore,the Arithmetic Optimization Algorithm(AOA)is used to identify the optimal gene subset to reduce the number of selected genes.Which can allow the classifiers to yield the best performance for lung cancer classification.In addition,we proposed a modified version of AOA which can work effectively on the high dimensional dataset.In the modified AOA,the features are ranked by their weights and are used to initialize the AOA population.The exploitation process of AOA is then enhanced by developing a local search algorithm based on two neighborhood strategies.Finally,the efficiency of the proposed methods was evaluated on gene expression datasets related to Lung cancer using stratified 4-fold cross-validation.The method’s efficacy in selecting the optimal gene subset is underscored by its ability to maintain feature proportions between 10%to 25%.Moreover,the approach significantly enhances lung cancer prediction accuracy.For instance,Lung_Harvard1 achieved an accuracy of 97.5%,Lung_Harvard2 and Lung_Michigan datasets both achieved 100%,Lung_Adenocarcinoma obtained an accuracy of 88.2%,and Lung_Ontario achieved an accuracy of 87.5%.In conclusion,the results indicate the potential promise of the proposed modified AOA approach in classifying microarray cancer data. 展开更多
关键词 Lung cancer gene selection improved arithmetic optimization algorithm and machine learning
下载PDF
Improved Ant Colony-Genetic Algorithm for Information Transmission Path Optimization in Remanufacturing Service System 被引量:7
4
作者 Lei Wang Xu-Hui Xia +2 位作者 Jian-Hua Cao Xiang Liu Jun-Wei Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期106-117,共12页
The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission ... The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission of remanu?facturing service system, which leads to a critical need for designing planning models to deal with this added uncer?tainty and complexity. In this paper, a three?dimensional(3D) model of remanufacturing service information network for information transmission is developed, which combines the physic coordinate and the transmitted properties of all the devices in the remanufacturing service system. In order to solve the basic ITPO in the 3D model, an improved 3D ant colony algorithm(Improved AC) was put forward. Moreover, to further improve the operation e ciency of the algorithm, an improved ant colony?genetic algorithm(AC?GA) that combines the improved AC and genetic algorithm was developed. In addition, by taking the transmission of remanufacturing service demand information of certain roller as example, the e ectiveness of AC?GA algorithm was analyzed and compared with that of improved AC, and the results demonstrated that AC?GA algorithm was superior to AC algorithm in aspects of information transmission delay, information transmission cost, and rate of information loss. 展开更多
关键词 Remanufacturing service Information transmission Path optimization ant colony algorithm genetic algorithm
下载PDF
Ant colony algorithm based on genetic method for continuous optimization problem 被引量:1
5
作者 朱经纬 蒙培生 王乘 《Journal of Shanghai University(English Edition)》 CAS 2007年第6期597-602,共6页
A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of componen... A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the possibility determined by trail information and fitness of the seed. The genetic method is used to form new solutions from the solutions got by the ants. Best solutions are selected to update the seeds in the sets and trail information of the seeds. In updating the trail information, a diffusion function is used to achieve the diffuseness of trail information. The new algorithm is tested with 8 different benchmark functions. 展开更多
关键词 ant colony algorithm genetic method diffusion function continuous optimization problem.
下载PDF
Electro-Hydraulic Servo System Identification of Continuous Rotary Motor Based on the Integration Algorithm of Genetic Algorithm and Ant Colony Optimization 被引量:1
6
作者 王晓晶 李建英 +1 位作者 李平 修立威 《Journal of Donghua University(English Edition)》 EI CAS 2012年第5期428-433,共6页
In order to increase the robust performance of electro-hydraulic servo system, the system transfer function was identified by the intergration algorithm of genetic algorithm and ant colony optimization(GA-ACO), which ... In order to increase the robust performance of electro-hydraulic servo system, the system transfer function was identified by the intergration algorithm of genetic algorithm and ant colony optimization(GA-ACO), which was based on standard genetic algorithm and combined with positive feedback mechanism of ant colony algorithm. This method can obtain the precise mathematic model of continuous rotary motor which determines the order of servo system. Firstly, by constructing an appropriate fitness function, the problem of system parameters identification is converted into the problem of system parameter optimization. Secondly, in the given upper and lower bounds a set of optimal parameters are selected to meet the best approximation of the actual system. And the result shows that the identification output can trace the sampling output of actual system, and the error is very small. In addition, another set of experimental data are used to test the identification result. The result shows that the identification parameters can approach the actual system. The experimental results verify the feasibility of this method. And it is fit for the parameter identification of general complex system using the integration algorithm of GA-ACO. 展开更多
关键词 continuous rotary motor system identification genetic algorithm and ant colony optimization (GA-ACO) algorithm
下载PDF
Feature Extraction of Stored-grain Insects Based on Ant Colony Optimization and Support Vector Machine Algorithm 被引量:1
7
作者 胡玉霞 张红涛 +1 位作者 罗康 张恒源 《Agricultural Science & Technology》 CAS 2012年第2期457-459,共3页
[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored... [Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible. 展开更多
关键词 Stored-grain insects ant colony optimization algorithm Support vector machine Feature extraction RECOGNITION
下载PDF
Novel Approach to Nonlinear PID Parameter Optimization Using Ant Colony Optimization Algorithm 被引量:11
8
作者 Duan Hai-bin Wang Dao-bo Yu Xiu-fen 《Journal of Bionic Engineering》 SCIE EI CSCD 2006年第2期73-78,共6页
This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorith... This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorithm, which is based on the behaviour of real ants in nature searching for food. In order to optimize the parameters of the nonlinear PID controller using ACO algorithm, an objective function based on position tracing error was constructed, and elitist strategy was adopted in the improved ACO algorithm. Detailed simulation steps are presented. This nonlinear PID controller using the ACO algorithm has high precision of control and quick response. 展开更多
关键词 ant Colony optimization algorithm PHEROMONE nonlinear PID parameter optimization
下载PDF
Ant Colony Optimization Approach Based Genetic Algorithms for Multiobjective Optimal Power Flow Problem under Fuzziness
9
作者 Abd Allah A. Galal Abd Allah A. Mousa Bekheet N. Al-Matrafi 《Applied Mathematics》 2013年第4期595-603,共9页
In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, ... In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, since there is instabilities in the global market, implications of global financial crisis and the rapid fluctuations of prices, a fuzzy representation of the optimal power flow problem has been defined, where the input data involve many parameters whose possible values may be assigned by the expert. Secondly, by enhancing ant colony optimization through genetic algorithm, a strong robustness and more effectively algorithm was created. Also, stable Pareto set of solutions has been detected, where in a practical sense only Pareto optimal solutions that are stable are of interest since there are always uncertainties associated with efficiency data. The results on the standard IEEE systems demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal nondominated solutions of the multiobjective OPF. 展开更多
关键词 ant COLONY genetic algorithm Fuzzy NUMBERS OPTIMAL Power Flow
下载PDF
Optimization of Fairhurst-Cook Model for 2-D Wing Cracks Using Ant Colony Optimization (ACO), Particle Swarm Intelligence (PSO), and Genetic Algorithm (GA)
10
作者 Mohammad Najjarpour Hossein Jalalifar 《Journal of Applied Mathematics and Physics》 2018年第8期1581-1595,共15页
The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the slid... The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack. 展开更多
关键词 WING Crack Fairhorst-Cook Model Sensitivity Analysis optimization Particle Swarm INTELLIGENCE (PSO) ant Colony optimization (ACO) genetic algorithm (GA)
下载PDF
Improved ant colony optimization algorithm for the traveling salesman problems 被引量:22
11
作者 Rongwei Gan Qingshun Guo +1 位作者 Huiyou Chang Yang Yi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期329-333,共5页
Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is amo... Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness. 展开更多
关键词 ant colony optimization heuristic algorithm scout ants path evaluation model traveling salesman problem.
下载PDF
Ant colony optimization algorithm and its application to Neuro-Fuzzy controller design 被引量:11
12
作者 Zhao Baojiang Li Shiyong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期603-610,共8页
An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and s... An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation. The results of function optimization show that the algorithm has good searching ability and high convergence speed. The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum. In order to avoid the combinatorial explosion of fuzzy rules due tσ multivariable inputs, a state variable synthesis scheme is employed to reduce the number of fuzzy rules greatly. The simulation results show that the designed controller can control the inverted pendulum successfully. 展开更多
关键词 neuro-fuzzy controller ant colony algorithm function optimization genetic algorithm inverted pen-dulum system.
下载PDF
An adaptive ant colony system algorithm for continuous-space optimization problems 被引量:20
13
作者 李艳君 吴铁军 《Journal of Zhejiang University Science》 CSCD 2003年第1期40-46,共7页
Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is pr... Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates.Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved. 展开更多
关键词 ant colony algorithm Continuous space optimization Pheromone update strategy
下载PDF
Improved Multi-objective Ant Colony Optimization Algorithm and Its Application in Complex Reasoning 被引量:3
14
作者 WANG Xinqing ZHAO Yang +2 位作者 WANG Dong ZHU Huijie ZHANG Qing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期1031-1040,共10页
The problem of fault reasoning has aroused great concern in scientific and engineering fields.However,fault investigation and reasoning of complex system is not a simple reasoning decision-making problem.It has become... The problem of fault reasoning has aroused great concern in scientific and engineering fields.However,fault investigation and reasoning of complex system is not a simple reasoning decision-making problem.It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints.So far,little research has been carried out in this field.This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes.Three optimization objectives are considered simultaneously: maximum probability of average fault,maximum average importance,and minimum average complexity of test.Under the constraints of both known symptoms and the causal relationship among different components,a multi-objective optimization mathematical model is set up,taking minimizing cost of fault reasoning as the target function.Since the problem is non-deterministic polynomial-hard(NP-hard),a modified multi-objective ant colony algorithm is proposed,in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives.At last,a Pareto optimal set is acquired.Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set,through which the final fault causes can be identified according to decision-making demands,thus realize fault reasoning of the multi-constraint and multi-objective complex system.Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model,which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and reasoning of complex system. 展开更多
关键词 fault reasoning ant colony algorithm Pareto set multi-objective optimization complex system
下载PDF
An effective multi-level algorithm based on ant colony optimization for graph bipartitioning 被引量:3
15
作者 冷明 郁松年 +1 位作者 丁旺 郭强 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期426-432,共7页
Partitioning is a fundamental problem with applications to many areas including data mining, parellel processing and Very-large-scale integration (VLSI) design. An effective multi-level algorithm for bisecting graph... Partitioning is a fundamental problem with applications to many areas including data mining, parellel processing and Very-large-scale integration (VLSI) design. An effective multi-level algorithm for bisecting graph is proposed. During its coarsening phase, an improved matching approach based on the global information of the graph core is developed with its guidance function. During the refinement phase, the vertex gain is exploited as ant's heuristic information and a positive feedback method based on pheromone trails is used to find the global approximate bipartitioning. It is implemented with American National Standards Institute (ANSI) C and compared to MeTiS. The experimental evaluation shows that it performs well and produces encouraging solutions on 18 different graphs benchmarks. 展开更多
关键词 rain-cut GRAPH bipartitioning multi-level algorithm ant colony optimization (ACO)
下载PDF
Buffer allocation method of serial production lines based on improved ant colony optimization algorithm 被引量:2
16
作者 周炳海 Yu Jiadi 《High Technology Letters》 EI CAS 2016年第2期113-119,共7页
Buffer influences the performance of production lines greatly.To solve the buffer allocation problem(BAP) in serial production lines with unreliable machines effectively,an optimization method is proposed based on an ... Buffer influences the performance of production lines greatly.To solve the buffer allocation problem(BAP) in serial production lines with unreliable machines effectively,an optimization method is proposed based on an improved ant colony optimization(IACO) algorithm.Firstly,a problem domain describing buffer allocation is structured.Then a mathematical programming model is established with an objective of maximizing throughput rate of the production line.On the basis of the descriptions mentioned above,combining with a two-opt strategy and an acceptance probability rule,an IACO algorithm is built to solve the BAP.Finally,the simulation experiments are designed to evaluate the proposed algorithm.The results indicate that the IACO algorithm is valid and practical. 展开更多
关键词 buffer allocation improved ant colony optimization (IACO) algorithm serial pro-duction line throughput rate
下载PDF
Novel Voltage Scaling Algorithm Through Ant Colony Optimization for Embedded Distributed Systems
17
作者 章立生 丁丹 《Journal of Beijing Institute of Technology》 EI CAS 2007年第4期430-436,共7页
Dynamic voltage scaling (DVS), supported by many DVS-enabled processors, is an efficient technique for energy-efficient embedded systems. Many researchers work on DVS and have presented various DVS algorithms, some wi... Dynamic voltage scaling (DVS), supported by many DVS-enabled processors, is an efficient technique for energy-efficient embedded systems. Many researchers work on DVS and have presented various DVS algorithms, some with quite good results. However, the previous algorithms either have a large time complexity or obtain results sensitive to the count of the voltage modes. Fine-grained voltage modes lead to optimal results, but coarse-grained voltage modes cause less optimal one. A new algorithm is presented, which is based on ant colony optimization, called ant colony optimization voltage and task scheduling (ACO-VTS) with a low time complexity implemented by parallelizing and its linear time approximation algorithm. Both of them generate quite good results, saving up to 30% more energy than that of the previous ones under coarse-grained modes, and their results don’t depend on the number of modes available. 展开更多
关键词 dynamic voltage algorithm distributed system ant colony optimization MULTI-PROCESSOR
下载PDF
Security Test Case Prioritization through Ant Colony Optimization Algorithm
18
作者 Abdulaziz Attaallah Khalil al-Sulbi +5 位作者 Areej Alasiry Mehrez Marzougui Mohd Waris Khan Mohd Faizan Alka Agrawal Dhirendra Pandey 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期3165-3195,共31页
Security testing is a critical concern for organizations worldwide due to the potential financial setbacks and damage to reputation caused by insecure software systems.One of the challenges in software security testin... Security testing is a critical concern for organizations worldwide due to the potential financial setbacks and damage to reputation caused by insecure software systems.One of the challenges in software security testing is test case prioritization,which aims to reduce redundancy in fault occurrences when executing test suites.By effectively applying test case prioritization,both the time and cost required for developing secure software can be reduced.This paper proposes a test case prioritization technique based on the Ant Colony Optimization(ACO)algorithm,a metaheuristic approach.The performance of the ACO-based technique is evaluated using the Average Percentage of Fault Detection(APFD)metric,comparing it with traditional techniques.It has been applied to a Mobile Payment Wallet application to validate the proposed approach.The results demonstrate that the proposed technique outperforms the traditional techniques in terms of the APFD metric.The ACO-based technique achieves an APFD of approximately 76%,two percent higher than the second-best optimal ordering technique.These findings suggest that metaheuristic-based prioritization techniques can effectively identify the best test cases,saving time and improving software security overall. 展开更多
关键词 CONFIDENTIALITY INTEGRITY AUTHENTICATION NON-REPUDIATION RESILIENCE AUTHORIZATION ant Colony optimization algorithm
下载PDF
Improved ant colony optimization for multi-depot heterogeneous vehicle routing problem with soft time windows 被引量:10
19
作者 汤雅连 蔡延光 杨期江 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期94-99,共6页
Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a ... Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful. 展开更多
关键词 vehicle routing problem soft time window improved ant colony optimization customer service priority genetic algorithm
下载PDF
Research on Grid Planning of Dual Power Distribution Network Based on Parallel Ant Colony Optimization Algorithm
20
作者 Shuaixiang Wang 《Journal of Electronic Research and Application》 2023年第1期32-41,共10页
A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the s... A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement. 展开更多
关键词 Parallel ant colony optimization algorithm Dual power sources Distribution network Grid planning
下载PDF
上一页 1 2 147 下一页 到第
使用帮助 返回顶部