Effect of the specific gene knockout on the main metabolism in Escherichia coli was reviewed, and the regulation mechanisms were clarified based on different levels of information such as gene expressions, enzyme acti...Effect of the specific gene knockout on the main metabolism in Escherichia coli was reviewed, and the regulation mechanisms were clarified based on different levels of information such as gene expressions, enzyme activities, intracellular metabolite concentrations, and metabolic fluxes together with fermentation data. The effects of the knockout of such genes as pflA, pta, ppc, pykF, adhE, and ldhA on the metabolic changes were analyzed for the case under anaerobic condition. The effects of the knockout of such genes as pgi, zwf, gnd, ppc pck, pyk, and lpdA on the metabolic changes were also analyzed for the case under aerobic condition. The metabolic regulation analysis was made focusing on the roles of transcription factors.展开更多
The pistil, the female reproductive organ of plants, is a key player in the success of sexual plant reproduction. Ultimately, the production of fruits and seeds depends on the proper pistil development and function. T...The pistil, the female reproductive organ of plants, is a key player in the success of sexual plant reproduction. Ultimately, the production of fruits and seeds depends on the proper pistil development and function. Therefore, the identification and characterization of pistil expressed genes is essential for a better understanding and manipulation of the plant reproduction process. For studying the function of pistil expressed genes, transgenic and/or mutant plants for the genes of interest are used. The present article provides a review of methods already exploited to analyze sexual reproductive success. We intend to supply useful information and to guide future experiments in the study of genes affecting pistil development and function.展开更多
文摘Effect of the specific gene knockout on the main metabolism in Escherichia coli was reviewed, and the regulation mechanisms were clarified based on different levels of information such as gene expressions, enzyme activities, intracellular metabolite concentrations, and metabolic fluxes together with fermentation data. The effects of the knockout of such genes as pflA, pta, ppc, pykF, adhE, and ldhA on the metabolic changes were analyzed for the case under anaerobic condition. The effects of the knockout of such genes as pgi, zwf, gnd, ppc pck, pyk, and lpdA on the metabolic changes were also analyzed for the case under aerobic condition. The metabolic regulation analysis was made focusing on the roles of transcription factors.
基金Supported by grants from Fundao de Amparo à Pesquisa no Estado de So Paulo – Brazil(FAPESP no. 06/54431-9)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) – Brazil. CPG Calixto was supported by a fellowship from FAPESP.
文摘The pistil, the female reproductive organ of plants, is a key player in the success of sexual plant reproduction. Ultimately, the production of fruits and seeds depends on the proper pistil development and function. Therefore, the identification and characterization of pistil expressed genes is essential for a better understanding and manipulation of the plant reproduction process. For studying the function of pistil expressed genes, transgenic and/or mutant plants for the genes of interest are used. The present article provides a review of methods already exploited to analyze sexual reproductive success. We intend to supply useful information and to guide future experiments in the study of genes affecting pistil development and function.