期刊文献+
共找到86篇文章
< 1 2 5 >
每页显示 20 50 100
Synchronous conjugation of i-motif DNA and therapeutic siRNA on the vertexes of tetrahedral DNA nanocages for efficient gene silence 被引量:2
1
作者 Xiu Han Xiang Xu +2 位作者 Ziheng Wu Zhenghong Wu Xiaole Qi 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2021年第10期3286-3296,共11页
The functionality of DNA biomacromolecules has been widely excavated,as therapeutic drugs,carriers,and functionalized modification derivatives.In this study,we developed a series of DNA tetrahedron nanocages(Td),via s... The functionality of DNA biomacromolecules has been widely excavated,as therapeutic drugs,carriers,and functionalized modification derivatives.In this study,we developed a series of DNA tetrahedron nanocages(Td),via synchronous conjugating different numbers of i-(X)and therapeutic siRNA on four vertexes of tetrahedral DNA nanocage(aX-Td@bsiRNA,a+b=4).This i-motif-conjugated Td exhibited good endosomal escape behaviours in A549 tumor cells,and the escape efficiency was affected by the number of i-motif.Furthermore,the downregulating mRNA and protein expression level of epidermal growth factor receptor(EGFR)caused by this siRNA embedded Td were verified in A549 cells.The tumor growth inhibition efficiency of the 2X-Td@2siRNA treated group in tumorbearing mice was significantly higher than that of non-i-motif-conjugated Td@2siRNA(3.14-fold)and free siRNA(3.63-fold).These results demonstrate a general strategy for endowing DNA nanostructures with endosomal escape behaviours to achieve effective in vivo gene delivery and therapy. 展开更多
关键词 I-MOTIF SIRNA gene delivery DNA tetrahedron Endosomal escape Cancer gene silence Biocompatibility
原文传递
Transplantation of Nogo-66 receptor gene-silenced cells in a poly(D,L-lactic-co-glycolic acid) scaffold for the treatment of spinal cord injury 被引量:8
2
作者 Dong Wang Yuhong Fan Jianjun Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第8期677-685,共9页
Inhibition of neurite growth, which is in large part mediated by the Nogo-66 receptor, affects neural regeneration following bone marrow mesenchymal stem cell transplantation. The tissue engineering scaffold poly(D,L... Inhibition of neurite growth, which is in large part mediated by the Nogo-66 receptor, affects neural regeneration following bone marrow mesenchymal stem cell transplantation. The tissue engineering scaffold poly(D,L-lactide-co-glycolic acid) has good histocompatibility and can promote the growth of regenerating nerve fibers. The present study used small interfering RNA to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells and Schwann cells, which were subsequently transplanted with poly(D,L-lactide-co-glycolic acid) into the spinal cord lesion regions in rats. Simultaneously, rats treated with scaffold only were taken as the control group. Hematoxylin-eosin staining and immunohistochemistry revealed that at 4 weeks after transplantation, rats had good motor function of the hind limb after treatment with Nogo-66 receptor gene-silenced ceils prus the poly(O,L-lactide-co-glycolic acid) scaffold compared with rats treated with scaffold only, and the number of bone marrow mesenchymal stem cells and neuron-like cells was also increased. At 8 weeks after transplantation, horseradish peroxidase tracing and transmission electron microscopy showed a large number of unmyelinated and myelinated nerve fibers, as well as intact regenerating axonal myelin sheath following spinal cord hemisection injury. These experimental findings indicate that transplantation of Nogo-66 receptor gene-silenced bone marrow mesenchymal stem cells and Schwann cells plus a poly(D,L-lactide-co-glycolic acid) scaffold can significantly enhance axonal regeneration of spinal cord neurons and improve motor function of the extremities in rats following spinal cord injury. 展开更多
关键词 neural regeneration spinal cord injury bone marrow mesenchymal stem cells Schwann cells poly(D L-lactide-co-glycolic acid) Nogo-66 receptor gene rats gene silencing grants-supportedpaper photographs-containing paper neuroregeneration
下载PDF
Nanotechnology-based gene therapy as a credible tool in the treatment of Alzheimer’s disease
3
作者 Aziz Unnisa Nigel H.Greig Mohammad Amjad Kamal 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2127-2133,共7页
Toxic aggregated amyloid-βaccumulation is a key pathogenic event in Alzheimer’s disease.Treatment approaches have focused on the suppression,deferral,or dispersion of amyloid-βfibers and plaques.Gene therapy has ev... Toxic aggregated amyloid-βaccumulation is a key pathogenic event in Alzheimer’s disease.Treatment approaches have focused on the suppression,deferral,or dispersion of amyloid-βfibers and plaques.Gene therapy has evolved as a potential therapeutic option for treating Alzheimer’s disease,owing to its rapid advancement over the recent decade.Small interfering ribonucleic acid has recently garnered considerable attention in gene therapy owing to its ability to down-regulate genes with high sequence specificity and an almost limitless number of therapeutic targets,including those that were once considered undruggable.However,lackluster cellular uptake and the destabilization of small interfering ribonucleic acid in its biological environment restrict its therapeutic application,necessitating the development of a vector that can safeguard the genetic material from early destruction within the bloodstream while effectively delivering therapeutic genes across the bloodbrain barrier.Nanotechnology has emerged as a possible solution,and several delivery systems utilizing nanoparticles have been shown to bypass key challenges regarding small interfering ribonucleic acid delivery.By reducing the enzymatic breakdown of genetic components,nanomaterials as gene carriers have considerably enhanced the efficiency of gene therapy.Liposomes,polymeric nanoparticles,magnetic nanoparticles,dendrimers,and micelles are examples of nanocarriers that have been designed,and each has its own set of features.Furthermore,recent advances in the specific delivery of neurotrophic compounds via gene therapy have provided promising results in relation to augmenting cognitive abilities.In this paper,we highlight the use of different nanocarriers in targeted gene delivery and small interfering ribonucleic acid-mediated gene silencing as a potential platform for treating Alzheimer’s disease. 展开更多
关键词 Alzheimer’s disease amyloid-β BACE1 gene silencing gene therapy nanoparticle NEUROTROPHINS small interfering ribonucleic acid
下载PDF
Cloning and Function Identification of a Phytoene Desaturase Gene from Eucommia ulmoides
4
作者 Jiali Wang Xiangmei Chen +2 位作者 Xiaozhen Huang Yichen Zhao Degang Zhao 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第5期1377-1389,共13页
The phytoene desaturase(PDS)encodes a crucial enzyme in the carotenoid biosynthesis pathway.Silencing or inhibiting PDS expression leads to the appearance of mottled,chlorosis,or albino leaves.In this study,the CDS se... The phytoene desaturase(PDS)encodes a crucial enzyme in the carotenoid biosynthesis pathway.Silencing or inhibiting PDS expression leads to the appearance of mottled,chlorosis,or albino leaves.In this study,the CDS sequence of EuPDS(Eucommia ulmoides Phytoene Desaturase)was first cloned and then PDS was silenced in Nicotiana benthamiana.Result showed the expression level of EuPDS in leaves was higher than that in the roots and stems.In N.benthamiana leaves,which were treated by Agrobacterium for 24 h,photo-bleaching was shown on the fresh leaves one week after injection and the transcript level of PDS was down-regulated during the period of emersion.This suggested that EuPDS could silence PDS of N.benthamiana,so as to cause the phenotype of leaf whitening.PDS is the main reporter gene involved in virus-induced gene silencing(VIGS).This study offered molecular evidence for identifying PDS gene involved in Carotenoid’s biosynthesis pathway and the regulation networks in E.ulmides.It also laid a useful foundation for study on leaf discoloration mechanism of other woody plants. 展开更多
关键词 Eucommia ulmoides EuPDS virus-induced gene silencing TRV relative expression
下载PDF
Proteomics Study on the Differentially Expressed Proteins in c-fos-silenced Cells Exposed to PM2.5
5
作者 CAI Ying ZHENG Kai +9 位作者 LI Run Bing YU Shu Yuan LIU Ning JI Jia Jia YANG Chen WU De Sheng QIN Shuang Jian LI Bo Ru ZHANG Zhao Hui XU Xin Yun 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2020年第9期680-689,共10页
Objective To investigate the effect of c-fos gene silencing on differentially expressed proteins(DEPs) in human bronchial epithelial(HBE) cells after exposure to fine particulate matter(PM2.5).Methods HBE cells and c-... Objective To investigate the effect of c-fos gene silencing on differentially expressed proteins(DEPs) in human bronchial epithelial(HBE) cells after exposure to fine particulate matter(PM2.5).Methods HBE cells and c-fos-silenced HBE cells were exposed to 50 μg/mL PM2.5, LC-MS/MS and tandem mass tag(TMT) labeling methods were combined with bioinformatics methods, and DEPs and interaction networks were identified.Results In the HBE group, 414 DEPs were screened, of which 227 were up-regulated and 187 downregulated. In the c-fos silenced HBE group, 480 DEPs were screened, including 240 up-regulated proteins and 240 down-regulated proteins. KEGG annotations showed that DEPs in the HBE group are mainly concentrated in the glycolysis/gluconeogenesis pathway and those in the c-fos silenced group are concentrated mainly in endoplasmic reticulum and the processing of proteins. Additionally, the abnormal expression of GPRC5 C, DKK4, and UBE2 C was identified in top 15 DEPs. After constructing the protein interaction network, 20 Hub proteins including HNRNPA2 B1, HNRNPL, RPS15 A, and RPS25 were screened from the HBE group and the c-fos silenced HBE group.Conclusion c-fos gene affected the expression of cancer-related proteins. Our results provided a scientific basis for further study of PM2.5-induced carcinogenesis mechanism. 展开更多
关键词 PM2.5 Human bronchial epithelial cells gene silence PROTEOMICS BIOINFORMATICS
下载PDF
Gene interference regulates aquaporin-4 expression in swollen tissue of rats with cerebral ischemic edema Correlation with variation in apparent diffusion coefficient 被引量:14
6
作者 Hui Hu Hong Lu +3 位作者 Zhanping He Xiangjun Han Jing Chen Rong Tu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第21期1659-1666,共8页
To investigate the effects of mRNA interference on aquaporin-4 expression in swollen tissue of rats with ischemic cerebral edema, and diagnose the significance of diffusion-weighted MRI, we injected 5 pL shRNA- aquapo... To investigate the effects of mRNA interference on aquaporin-4 expression in swollen tissue of rats with ischemic cerebral edema, and diagnose the significance of diffusion-weighted MRI, we injected 5 pL shRNA- aquaporin-4 (control group) or siRNA- aquaporin-4 solution (1:800) (RNA interference group) into the rat right basal ganglia immediately before occlusion of the middle cerebral artery. At 0.25 hours after occlusion of the middle cerebral artery, diffusion-weighted MRI displayed a high signal; within 2 hours, the relative apparent diffusion coefficient decreased markedly, aquaporin-4 expression increased rapidly, and intracellular edema was obviously aggravated; at 4 and 6 hours, the relative apparent diffusion coefficient slowly returned to control levels, aquaporin-4 expression slightly increased, and angioedema was observed. In the RNA interference group, during 0.25- 6 hours after injection of siRNA- aquaporin-4 solution, the relative apparent diffusion coefficient slightly fluctuated and aquaporin-4 expression was upregulated; during 0.5 4 hours, the relative apparent diffusion coefficient was significantly higher, while aquaporin-4 expression was significantly lower when compared with the control group, and intracellular edema was markedly reduced; at 0.25 and 6 hours, the relative apparent diffusion coefficient and aquaporin-4 expression were similar when compared with the control group; obvious angioedema remained at 6 hours. Pearson's correlation test results showed that aquaporin-4 expression was negatively correlated with the apparent diffusion coefficient (r = -0.806, P 〈 0.01). These findings suggest that upregulated aquaporin-4 expression is likely to be the main molecular mechanism of intracellular edema and may be the molecular basis for decreased relative apparent diffusion coefficient. Aquaporin-4 gene interference can effectively inhibit the upregulation of aquaporin-4 expression during the stage of intracelfular edema with time-effectiveness. Moreover, diffusion-weighted MRI can accurately detect intracellular edema. 展开更多
关键词 cerebral ischemic edema magnetic resonance imaging diffusion gene silencing AQUAPORIN-4 mRNA interference neural regeneration
下载PDF
Bone marrow mesenchymal stem cells with Nogo-66 receptor gene silencing for repair of spinal cord injury 被引量:5
7
作者 Zhiyuan Li Zhanxiu Zhang +3 位作者 Lili Zhao Hui Li Suxia Wang Yong Shen 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第8期806-814,共9页
We hypothesized that RNA interference to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells before transplantation might further improve neurological function in rats with spinal cord trans... We hypothesized that RNA interference to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells before transplantation might further improve neurological function in rats with spinal cord transection injury. After 2 weeks, the number of neurons and BrdU-positive cells in the Nogo-66 receptor gene silencing group was higher than in the bone marrow mesenchymal stem cell group, and significantly greater compared with the model group. After 4 weeks, behavioral performance was signiifcantly enhanced in the model group. Af-ter 8 weeks, the number of horseradish peroxidase-labeled nerve ifbers was higher in the Nogo-66 receptor gene silencing group than in the bone marrow mesenchymal stem cell group, and signiifcantly higher than in the model group. The newly formed nerve ifbers and myelinated ner ve ifbers were detectable in the central transverse plane section in the bone marrow mesenchymal stem cell group and in the Nogo-66 receptor gene silencing group. 展开更多
关键词 nerve regeneration spinal cord injury bone marrow mesenchymal stem cells Nogo-66receptor RNA interference horseradish peroxidase BRDU gene silencing neural regeneration
下载PDF
Establishment and Verification of An Efficient Virus-induced Gene Silencing System in Forsythia 被引量:3
8
作者 Jianshuang Shen Weijia Si +5 位作者 Yutong Wu Yang Xu Jia Wang Tangren Cheng Qixiang Zhang Huitang Pan 《Horticultural Plant Journal》 SCIE CSCD 2021年第1期81-88,共8页
To understand the functional identification of large-scale genomic sequences in Forsythia,tobacco rattle virus(TRV)-mediated virus-induced gene silencing(VIGS),suitable for the plant,was explored in this study.The res... To understand the functional identification of large-scale genomic sequences in Forsythia,tobacco rattle virus(TRV)-mediated virus-induced gene silencing(VIGS),suitable for the plant,was explored in this study.The results showed that the TRV-mediated VIGS system could be successfully used in Forsythia for silencing the reporter gene FsPDS(Forsythia phytoene desaturase)using stem infiltration and leaf infiltrationmethods.All the treated plants were pruned below the injection site after 7–15 d infection;the FsPDS was silenced and typical photobleaching symptoms were observed in newly sprouted leaves at the whole-plant level.Meanwhile,this system has been successfully tested and verified through virus detection and qRT-PCR analysis.After the optimization,Forsythia magnesium chelatase subunit H(FsChlH)was silenced successfully in Forsythia using this system,resulting in yellow leaveswith decreased chlorophyll content.The system was stable,highly efficient and had greater rapidity and convenience,which made it suitable to study the function of genes related to physiological pathways such as growth and development,and metabolic regulation in Forsythia. 展开更多
关键词 FORSYTHIA Virus-induced gene silencing phytoene desaturase TRV whole-plant level
下载PDF
Targeted Silencing of Heparanase Gene by Small Interfering RNA Inhibits Invasiveness and Metastasis of Osteosarcoma Cells 被引量:2
9
作者 范磊 吴强 +2 位作者 邢晓娟 刘郁东 邵增务 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2011年第3期348-352,共5页
The effects of targeted silencing of heparanase gene by small interfering RNA(siRNA) on invasiveness and metastasis of osteosarcoma cells(MG63 cells) were investigated in the present study.Two complementary oligon... The effects of targeted silencing of heparanase gene by small interfering RNA(siRNA) on invasiveness and metastasis of osteosarcoma cells(MG63 cells) were investigated in the present study.Two complementary oligonucleotide strands were synthesized and inserted into pGenesil-1 vector based on the mRNA sequence of heparanase gene.The expression vector containing short hairpin RNA(pGenesil-shRNA) was constructed successfully.MG63 cells were randomly allocated into 3 groups:blank group,empty vector(pGenesil) transfected group and expression vector(pGenesil-shRNA) transfected group.Under the induction of Lipofectamine 2000,the recombinants were transfected into MG63 cells.Heparanase gene expression level was detected by RT-PCR and Western blotting.Cell prolifera-tion was measured by MTT assay.Cell invasiveness and metastasis were examined by cell adhesion and Transwell-ECM assays.HUVECs migration assay was applied for the detection of angiogenesis.As compared with negative controls,the mRNA and protein expression levels of heparanase were down-regulated by 76.1%(P0.01) and 75.3%(P0.01) respectively in the pGenesil-shRNA transfected group.Meanwhile,the proliferation,adhesiveness,invasiveness and angiogenesis properties of MG63 cells were all significantly inhibited.It was suggested that targeted silencing of heparanase gene by siRNA could dramatically inhibit the invasiveness and metastasis of osteosarcoma cells. 展开更多
关键词 siRNA shRNA HEPARANASE gene silencing OSTEOSARCOMA gene expression invasion METASTASIS
下载PDF
Silencing hepatitis B virus covalently closed circular DNA: The potential of an epigenetic therapy approach 被引量:2
10
作者 Prashika Singh Dylan Kairuz +1 位作者 Patrick Arbuthnot Kristie Bloom 《World Journal of Gastroenterology》 SCIE CAS 2021年第23期3182-3207,共26页
Global prophylactic vaccination programmes have helped to curb new hepatitis B virus(HBV)infections.However,it is estimated that nearly 300 million people are chronically infected and have a high risk of developing he... Global prophylactic vaccination programmes have helped to curb new hepatitis B virus(HBV)infections.However,it is estimated that nearly 300 million people are chronically infected and have a high risk of developing hepatocellular carcinoma.As such,HBV remains a serious health priority and the development of novel curative therapeutics is urgently needed.Chronic HBV infection has been attributed to the persistence of the covalently closed circular DNA(cccDNA)which establishes itself as a minichromosome in the nucleus of hepatocytes.As the viral transcription intermediate,the cccDNA is responsible for producing new virions and perpetuating infection.HBV is dependent on various host factors for cccDNA formation and the minichromosome is amenable to epigenetic modifications.Two HBV proteins,X(HBx)and core(HBc)promote viral replication by modulating the cccDNA epigenome and regulating host cell responses.This includes viral and host gene expression,chromatin remodeling,DNA methylation,the antiviral immune response,apoptosis,and ubiquitination.Elimination of the cccDNA minichromosome would result in a sterilizing cure;however,this may be difficult to achieve.Epigenetic therapies could permanently silence the cccDNA minichromosome and promote a functional cure.This review explores the cccDNA epigenome,how host and viral factors influence transcription,and the recent epigenetic therapies and epigenome engineering approaches that have been described. 展开更多
关键词 Chronic hepatitis B virus Epigenetic gene silencing Functional cure Hepatocellular carcinoma Hepatitis B surface antigen
下载PDF
Aquaporin-4 gene silencing protects injured neurons after early cerebral infarction 被引量:8
11
作者 Zhan-ping He Hong Lu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第7期1082-1087,共6页
Aquaporin-4 regulates water molecule channels and is important in tissue regulation and water transportation in the brain. Upregulation of aquaporin-4 expression is closely related to cellular edema after early cerebr... Aquaporin-4 regulates water molecule channels and is important in tissue regulation and water transportation in the brain. Upregulation of aquaporin-4 expression is closely related to cellular edema after early cerebral infarction. Cellular edema and aquaporin-4 expression can be determined by measuring cerebral infarct area and apparent diffusion coefficient using diffusion-weighted imaging(DWI). We examined the effects of silencing aquaporin-4 on cerebral infarction. Rat models of cerebral infarction were established by occlusion of the right middle cerebral artery and si RNA-aquaporin-4 was immediately injected via the right basal ganglia. In control animals, the area of high signal intensity and relative apparent diffusion coefficient value on T2-weighted imaging(T2WI) and DWI gradually increased within 0.5–6 hours after cerebral infarction. After aquaporin-4 gene silencing, the area of high signal intensity on T2 WI and DWI reduced, relative apparent diffusion coefficient value was increased, and cellular edema was obviously alleviated. At 6 hours after cerebral infarction, the apparent diffusion coefficient value was similar between treatment and model groups, but angioedema was still obvious in the treatment group. These results indicate that aquaporin-4 gene silencing can effectively relieve cellular edema after early cerebral infarction; and when conducted accurately and on time, the diffusion coefficient value and the area of high signal intensity on T2 WI and DWI can reflect therapeutic effects of aquaporin-4 gene silencing on cellular edema. 展开更多
关键词 nerve regeneration middle cerebral artery occlusion cerebral ischemia cytotoxic edema angioedema magnetic resonance imaging diffusion-weighted imaging aquaporin-4 gene silencing
下载PDF
Piwi like RNA-mediated gene silencing 1 gene as a possible major player in gastric cancer 被引量:1
12
作者 Taíssa Araújo Andre Khayat +14 位作者 Luciana Quintana Danielle Calcagno Ronald Mourao Antonio Modesto Juliana Paiva Adhara Lima Fabiano Moreira Edivaldo Oliveira Michel Souza Moneeb Othman Thomas Liehr Eliana Abdelhay Renata Gomes Sidney Santos Paulo Assumpcao 《World Journal of Gastroenterology》 SCIE CAS 2018年第47期5338-5350,共13页
AIM To establish a permanent piwi like RNA-mediated genesilencing 1(PIWIL1) gene knockout in AGP01 gastric cancer cell line using CRISPR-Cas9 system and analyze phenotypic modifications as well as gene expression alte... AIM To establish a permanent piwi like RNA-mediated genesilencing 1(PIWIL1) gene knockout in AGP01 gastric cancer cell line using CRISPR-Cas9 system and analyze phenotypic modifications as well as gene expression alterations.METHODS CRISPR-Cas9 system used was purchased from Dharmacon GE Life Sciences(Lafayette, CO, United States) and permanent knockout was performed according to manufacturer's recommendations. Woundhealing assay was performed to investigate the effect of PIWIL1 knockout on migration capability of cells and Boyden chamber invasion assay was performed to investigate the effect on invasion capability. For the gene expression analysis, a one-color microarray-based gene expression analysis kit(Agilent Technologies, Santa Clara, CA, United States) was used according to the protocol provided by the manufacturer. RESULTS PIWIL1 gene knockout caused a significant decrease in AGP01 migration capacity as well as a significant decrease in cell invasiveness. Moreover, functional analysis based on grouping of all differentially expressed m RNAs identified a total of 35 genes(5 up-regulated and 30 down-regulated) encoding proteins involved in cellular invasion and migration. According to current literature, 9 of these 35 genes(DOCK2, ZNF503, PDE4 D, ABL1, ABL2, LPAR1, SMAD2, WASF3 and DACH1) are possibly related to the mechanisms used by PIWIL1 to promote carcinogenic effects related to migration and invasion, since their functions are consistent with the changes observed(being up-or down-regulated after knockout). CONCLUSION Taken together, these data reinforce the idea that PIWIL1 plays a crucial role in the signaling pathway of gastric cancer, regulating several genes involved in migration and invasion processes; therefore, its use as a therapeutic target may generate promising results in the treatment of gastric cancer. 展开更多
关键词 Gastric cancer Piwi like RNA-mediated gene silencing 1 CRISPR-Cas9 Migration INVASION
下载PDF
A MADS-box gene is involved in soybean resistance to multiple Soybean mosaic virus strains 被引量:1
13
作者 Qiuyan Ren Hua Jiang +5 位作者 Wenyang Xiang Yang Nie Song Xue Haijian Zhi Kai Li Junyi Gai 《The Crop Journal》 SCIE CSCD 2022年第3期802-808,共7页
Soybean mosaic virus(SMV)is a member of the genus Potyvirus that extensively impairs global soybean production.The full-length coding sequence of the MADS-box transcription factor Gm CAL was cloned from the SMV-resist... Soybean mosaic virus(SMV)is a member of the genus Potyvirus that extensively impairs global soybean production.The full-length coding sequence of the MADS-box transcription factor Gm CAL was cloned from the SMV-resistant soybean cultivar Kefeng 1.SMV-induced expression analysis indicated that Gm CAL responded quickly to SMV-SC8 infection in Kefeng 1 but not in NN1138-2.Gm CAL was expressed at high levels in flowers and pods but at lower levels in leaves.The gene was localized to the nucleus by subcellular localization assay.Virus-induced gene silencing did not increase the accumulation of SMV in Gm CAL-silenced Kefeng 1 plants(with silencing efficiency~80%)after SC8 inoculation.Gm CAL-silencing plants still conferred resistance to SC8 that might be owing to incomplete silencing of genes with lower expression.SMV content decreased significantly in Gm CAL-overexpressing NN1138-2 plants after SMVSC3,SMV-SC7,and SMV-SC8 inoculation in comparison with a vector control,showing that overexpression of Gm CAL conferred broad-spectrum resistance to multiple SMV strains.These results confirm that Gm CAL,a key regulator but not a specific SC8 resistance gene(Rsc8),is a positive regulatory transcription factor involved in soybean resistance to SMV. 展开更多
关键词 MADS-box gene Soybean mosaic virus(SMV) Expression analysis Virus-induced gene silencing(VIGS) OVEREXPRESSION
下载PDF
Transcriptome Profiling of Abscisic Acid-Related Pathways in SNAC4/9-Silenced Tomato Fruits
14
作者 Yefang Liu Yanan Zhao +4 位作者 Liping Chai Jiaqian Zhou Sen Yang Xiaohong Kou Zhaohui Xue 《Transactions of Tianjin University》 EI CAS 2021年第6期473-486,共14页
The NAC(NAM,ATAF,and CUC)family is considered one of the largest families of plant transcription factor,and its members are involved in fruit ripening.Abscisic acid(ABA)has been demonstrated to modulate the fruit ripe... The NAC(NAM,ATAF,and CUC)family is considered one of the largest families of plant transcription factor,and its members are involved in fruit ripening.Abscisic acid(ABA)has been demonstrated to modulate the fruit ripening process.By applying the virus-induced gene silencing method and next-generation sequencing technology,we conducted a compara-tive analysis of the eff ects of SNAC4(SlNAC48,accession number:NM 001279348.2)and SNAC9(SlNAC19,accession number:XM 004236996.2)on tomato fruit ripening.The results of high-throughput sequencing identified 1262 significant(p<0.05)diff erentially expressed genes(DEGs)in SNAC4-silenced fruit compared to control fruit,while 655 DEGs were identified in SNAC9-silenced fruit.In addition,we selected 26 and 30 significant DEGs(p<0.05 and log 2-fold change>1.0)related to ABA in SNAC4-silenced and SNAC9-silenced tomatoes,respectively,for further analysis.The XET gene and two other genes(E8 and EXP1)were significantly down and upregulated in SNAC4-silenced tomatoes,respectively.However,the PYL9 gene and four other genes(PP2C,CYP707A2,EXPA6,and ACS6)were significantly down and upregulated in SNAC9-silenced tomatoes,respectively.In addition,ten DEGs were selected for use in tests to confirm the accuracy of the transcriptomic results by quantitative real-time polymerase chain reaction(qRT-PCR).Our results highlight the relationship between SNAC4/9 and ABA in the regulation of tomato ripening,which may help provide a theoretical basis for further research on the mechanisms of tomato fruit ripening and senescence. 展开更多
关键词 TOMATO RNA sequencing NAC transcription factor Virus-induced gene silencing Abscisic acid
下载PDF
Construction of RNAi Expression Vector against Riboflavin Synthase Gene
15
作者 Xiuyan REN Jie QIAO Jiangli ZHANG 《Agricultural Biotechnology》 CAS 2012年第2期43-45,共3页
[Objective] This study aimed to construct RNAi expression vector against r/boflavin synthase (RS) gene. [Method] By using the primers designed based on RS gone coding sequence that was screened from Arabidopsis cDNA... [Objective] This study aimed to construct RNAi expression vector against r/boflavin synthase (RS) gene. [Method] By using the primers designed based on RS gone coding sequence that was screened from Arabidopsis cDNA library, the 476 bp cDNA fragment of RS was amplified from pGADTT-RS recombinant plasmid, and then cloned into pUCm-T vector to obtain pUCm-RS. Two RS fragments (476 bp) were obtained through digesting pUCm-RS with restriction enzymes PstI/BamHI and PstI / Xhol, and then respectively connected into vector pBSSK-in to form pBSSK-RS-in-RS, in which the two RS fragments were inverted re- peats. Finally, the transform unit RS-intron-RS, got by digesting vector pBSSK-RS-in-RS with Sac I and Kpn I, was ligated into expression vector pCAMBIA1301 to obtain the RS gene silencing vector. [ Result] The restriction enzyme digestion sequencing analysis proved that the RS gene silencing vector was successfully con- structed. [ Conclusion] This study may provide a basic material for further studies on the bio-function of RS gene and the mechanism of signal transduction induced by HpaGxoo in plant. 展开更多
关键词 RS gene gene silencing Vector construction
下载PDF
Isolation and Functional Characterization of a B3 Transcription Factor Gene <i>FUSCA3</i>Involved in Pre-Harvest Sprouting Resistance in Wheat
16
作者 Xinguo Wang Lili Liu +5 位作者 Yanli Wang Xiaodan Meng Yumei Jiang Yongchun Li Lei Li Jiangping Ren 《Agricultural Sciences》 2021年第8期844-862,共19页
Pre-harvest sprouting (PHS) reduces yields and grain quality, resulting in seriously economic losses in wheat. It has been showed that PHS is significantly correlated to seed dormancy levels. <em>FUSCA3</em&g... Pre-harvest sprouting (PHS) reduces yields and grain quality, resulting in seriously economic losses in wheat. It has been showed that PHS is significantly correlated to seed dormancy levels. <em>FUSCA3</em> (<em>FUS3</em>) gene is considered to be the key regulator of seed dormancy. However, little information is available about the function of <em>FUS3</em> gene (<em>TaFUS3</em>) in wheat. In this study, three homologous genes were identified in wheat grain, and their functions were investigated by gene silencing. Three full-length DNA (3477, 3534 and 3501 bp) and cDNA (1015, 1012 and 1015 bp) sequences encoding a B3 transcription factor, designated <em>TaFUS3-3A</em>, <em>TaFUS3-3B</em> and <em>TaFUS3-3D</em>, were first isolated from common wheat. The transcription of three <em>TaFUS3</em> genes in seed development and germination process was detected.<em> TaFUS3-3B</em> and<em> TaFUS3-3D</em> had similar expression profiles, and high levels of gene transcripts were detected in seeds at 25 DAP (days after pollination) and after 24 h of imbibition. However, the transcription of <em>TaFUS3-3A </em>was not detected. Silencing of <em>TaFUS3</em> in common wheat spikes resulted in increased seed germination and PHS. Compared with wild-type, the <em>TaFUS3</em>-silenced plants showed increased expression of genes related to GA biosynthesis and ABA metabolism, and decreased expression of genes associated with ABA biosynthesis. Moreover, silencing of <em>TaFUS3</em> in wheat plants led to a decrease in embryo sensitivity to ABA and changed the expression of genes involved in ABA signal transduction. The results of gene silencing indicated that<em> TaFUS3</em> plays a positive role in wheat seed dormancy and PHS-resistance, which might be associated with ABA, GA level and signal transduction. 展开更多
关键词 Wheat (Triticum aestivum L.) FUSCA3 Molecular Cloning Virus-Induced gene Silencing (VIGS) Pre-Harvest Sprouting
下载PDF
Insect resistance management in Bacillus thuringiensis cotton by MGPS(multiple genes pyramiding and silencing)
17
作者 ZAFAR Muhammad Mubashar RAZZAQ Abdul +5 位作者 FAROOQ Muhammad Awais REHMAN Abdul FIRDOUS Hina SHAKEEL Amir MO Huijuan REN Maozhi 《Journal of Cotton Research》 2020年第4期311-323,共13页
The introduction of Bacillus thuringiensis(Bt)cotton has reduced the burden of pests without harming the environment and human health.However,the efficacy of Bt cotton has decreased due to field-evolved resistance in ... The introduction of Bacillus thuringiensis(Bt)cotton has reduced the burden of pests without harming the environment and human health.However,the efficacy of Bt cotton has decreased due to field-evolved resistance in insect pests over time.In this review,we have discussed various factors that facilitate the evolution of resistance in cotton pests.Currently,different strategies like pyramided cotton expressing two or more distinct Bt toxin genes,refuge strategy,releasing of sterile insects,and gene silencing by RNAi are being used to control insect pests.Pyramided cotton has shown resistance against different cotton pests.The multiple genes pyramiding and silencing(MGPS)approach has been proposed for the management of cotton pests.The genome information of cotton pests is necessary for the development of MGPS-based cotton.The expression cassettes against various essential genes involved in defense,detoxification,digestion,and development of cotton pests will successfully obtain favorable agronomic characters for crop protection and production.The MGPS involves the construction of transformable artificial chromosomes,that can express multiple distinct Bt toxins and RNAi to knockdown various essential target genes to control pests.The evolution of resistance in cotton pests will be delayed or blocked by the synergistic action of high dose of Bt toxins and RNAi as well as compliance of refuge requirement. 展开更多
关键词 Bt cotton RNAi Multiple genes pyramiding and silencing(MGPS) Bt resistance
下载PDF
A small knottin-like peptide negatively regulates in wheat to stripe rust resistance during early infection of wheat
18
作者 Shuangyuan Guo Min Li +7 位作者 Huankun Li Feng Zhang Qiong Zhang Xueling Huang Xing Li Xiaojie Wang Zhensheng Kang Xinmei Zhang 《The Crop Journal》 SCIE CSCD 2023年第2期457-467,共11页
Although Blufensins(Bln)have important functions in the response of plants to biotic stress the precise functioning of Bln in wheat remains largely unknown.Here we isolated a Bln gene(TaBln4)from Suwon 11 infected by ... Although Blufensins(Bln)have important functions in the response of plants to biotic stress the precise functioning of Bln in wheat remains largely unknown.Here we isolated a Bln gene(TaBln4)from Suwon 11 infected by Puccinia striiformis f.sp.tritici(Pst).Expression of TaBln4 increased in host plants at the early stage of infection with a virulent Pst race(CYR31)but was unchanged in response to infection by an avirulent race(CYR23).Transcription levels of TaBln4 were also regulated by hormone and abiotic stresses.Expression of TaBln4 in tobacco leaves suppressed Bax-induced programmed cell death.Knockdown of TaBln4 by virus-induced gene silencing inhibited colonization of race CYR31 by increasing the accumulation of H2O2 and formation of hypersensitive responses(HR).Transient overexpression of TaBln4 by a transient overexpression system(BSMV-VOX)increased the susceptibility of wheat to CYR31.Results from bimolecular fluorescence complementation and pull-down assays demonstrated that TaBLN4 interacted with calmodulin.Taken together,our results suggest that TaBln4 negatively regulates resistance in wheat to Pst in a reactive oxygen species(ROS)-and HR-dependent manner. 展开更多
关键词 HR HYPERSENSITIVITY Puccinia striiformis f.sp.tritici Triticum aestivum Virus-induced gene silencing
下载PDF
Molecular Characterization of Two Silenced y-type Genes for Glu-B1 in Triticum aestivum ssp.yunnanese and ssp.tibetanum 被引量:4
19
作者 Zhong-Wei Yuan 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2009年第1期93-99,共7页
The high molecular weight glutenin subunits (HMW-GSs) are a major class of common wheat storage proteins. The breadmaking quality of common wheat flour is influenced by the composition of HMW-GSs. In the present stu... The high molecular weight glutenin subunits (HMW-GSs) are a major class of common wheat storage proteins. The breadmaking quality of common wheat flour is influenced by the composition of HMW-GSs. In the present study, two unexpressed 1 By genes from Triticum aesitvum L.ssp.yunnanese AS332 and T. aesitvum ssp.tibetanurn AS908 were respectively cloned and characterized. The results indicated that both of the silenced 1By genes in AS332 and AS908 were 1Byg. In contrast to previously reported mechanisms for silenced genes lAx and lay, which was due to the insertion of transposon elements or the presence of premature stop codon via base substitution of C→T transition in trinucleotides CAA or CAG, the silence of 1By9 genes was caused by premature stop codons via the deletion of base A in trinucleotide CA.A, which lead to frameshift mutation and indirectly produced several premature stop codons (TAG) downstream of the coding sequence. 展开更多
关键词 1By common wheat gene silence Glu-B1 locus high molecular weight glutenin subunits.
原文传递
RNAi knockdown of C-erbB2 expression inhibits salivary gland adenoid cystic carcinoma SACC-83 cell growthin vitro 被引量:1
20
作者 Xiaohua Liu Yincheng Zhang +2 位作者 Wenhao Ren Tengteng Cao Yongjin Zhu 《The Journal of Biomedical Research》 CAS 2010年第3期215-222,共8页
Objective:To knockdown the C-erbB2 gene in salivary gland adenoid cystic carcinoma SACC-83 cells using RNA interference,and determine the effect of silencing C-erbB2 on cell proliferation.Methods:C-erbB2-siRNA was t... Objective:To knockdown the C-erbB2 gene in salivary gland adenoid cystic carcinoma SACC-83 cells using RNA interference,and determine the effect of silencing C-erbB2 on cell proliferation.Methods:C-erbB2-siRNA was transfected into SACC-83 cells.RT-PCR and immunohistochemistry were used to detect C-erbB2 expression in SACC-83 cells.Cell proliferation was measured by the MTT assay and gene knockdown was achieved by RNA interference.Apoptosis was analyzed by flow cytometry.Results:Compared with the control,C-erbB2 mRNA expression was decreased in the C-erbB2-siRNA transfection group,and immunohistochemical analysis indicated that C-erbB2 protein expression was decreased.After C-erbB2-siRNA was transfected for 48 h,absorbance at 570 nm (MTT)was 0.185±0.021 compared with 0.354±0.034,0.299±0.053,and 0.314±0.049 in the blank control,liposome control and negative control siRNA groups,respectively.The differences were statistically significant (P〈0.05)between the C-erbB2-siRNA group and the control groups.Following the C-erbB2 knockdown,the percentage of apoptotic cells was 5.63%compared with 2.04%,2.85%,and 2.98%in the three control groups,respectively.Proliferation of SACC-83 cells was inhibited,and early apoptotic cells were increased.Conclusion: RNA interference can effectively silence C-erbB2 gene expression and inhibit growth of SACC-83 cells,which indicates the potential of targeting this gene as a novel gene therapy approach for the treatment of salivary gland adenoid cystic carcinoma. 展开更多
关键词 salivary gland adenoid cystic carcinoma RNA interference C-ERBB2 gene silence
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部