BACKGROUND: Transplantation of Akt-over-expressing mesenchymal stem ceils (Akt-MSCs) has been shown to repair infarcted myocardium and improve cardiac function. However, little is known about the therapeutic effect...BACKGROUND: Transplantation of Akt-over-expressing mesenchymal stem ceils (Akt-MSCs) has been shown to repair infarcted myocardium and improve cardiac function. However, little is known about the therapeutic effects of Akt-MSCs on cardiac autonomic neuropathy in chronic heart failure (CHF). OBJECTIVE: The present study used adriamycin-induced CHF rat models to observe the effect of Akt-MSCs on cardiac autonomic nervous regeneration and the factors mediating this effect. DESIGN, TIME AND SETTING: A randomized, controlled animal experiment was performed at the Central Laboratory of Basic Medical College, China Medical University, between September 2008 and April 2009. MATERIALS: Rabbit anti-choline acetyltransferase (CHAT), growth associated protein-43 (GAP-43) synaptophysin (SYN) polyclonal antibodies and the secondary antibody (goat anti-rabbit IgG) were purchased from Boster, China. Cat-A-Kit assay system was provided by Amersham, USA. METHODS: (1) Adult rat MSCs were isolated and cultured for the preparation of Akt-MSCs. (2) Forty male Wistar rats were intramyocardially administered adriamycin at 2 mg/kg over 3 days for a total of five times and once a week for additional five times thereafter to establish CHF models. At 2 weeks after final adriamycin treatment, 34 successful CHF rat models were randomized to three groups: Akt-MSCs (n = 11), simple MSCs (s-MSCs, n =11), and control (n = 12). Each group was intravenously administered Akt-MSCs (2x106 cells in 100 IJL PBS), s-MSCs (2×10^6 cells in 100 μL PBS) or equal volume of phosphate buffered saline, once a day for a total of three times. MAIN OUTCOME MEASURES: At 4 weeks after final adriamycin treatment, myocardial norepinephrine (NE) content was detected using a Cat-A-Kit assay system. Myocardial CHAT, SYN and GAP-43 were performed by immunohistochemistry and Western blot analysis. Prior to, 2 and 4 weeks after adriamycin treatment, echocardiographic examination was performed and left ventricular ejection fraction (LVEF) was determined. RESULTS: Myocardial NE content, as well as SYN-positive and GAP-43-positive nerve fiber density and expression, and LVEF, was the greatest in the Akt-MSCs group, followed by the s-MSCs group, and lastly the control group (P 〈 0.05 or P 〈 0.01). ChAT expression was similar between Akt-MSCs and s-MSCs groups, but it was higher compared with the control group (P 〈 0.05). NE contents were negatively correlated to LVEF (r = -0.64, P = 0.015). CONCLUSION: Transplantation of MSCs, in particular Akt-MSCs, promotes cardiac nervous regeneration in failing heart, which might be mediated by GAP-43.展开更多
We aim to study the amelioration effect of adenovirus5-mediated human hepatocyte growth factor gene transfer on postinfarction heart failure in swine model. Twelve Suzhong young swine were randomly divided into 2 grou...We aim to study the amelioration effect of adenovirus5-mediated human hepatocyte growth factor gene transfer on postinfarction heart failure in swine model. Twelve Suzhong young swine were randomly divided into 2 groups of 6 pigs each: Ad5-HGF group and mock-vector Ad5 group. Four weeks after ligation of the left anterior descending coronary artery, Ad5-HGF was intracoronarily transferred into the myocardium. Simultaneously, gate cardiac perfusion imaging was performed to evaluate the heart function. Three weeks later, gate cardiac perfusion imaging was performed again, then the hearts were removed and sectioned for immunohistochemical examination to illustrate the effects of Ad5-HGF on infarcted myocardium. The expression of HGF was examined by ELISA. The results were: (1) compared with the mock-vector Ad5 group, high expression of human HGF was observed in the myocardium of Ad5-HGF group; (2) in the Ad5-HGF group, the number of CD117+ cells co-expressing c-Met per mm2 was significantly larger; (3) the improvement in LVEF was greater in the Ad5-HGF group than in the mock-vector Ad5 group. We concluded that: (1) high expression of human HGF was observed in the myocardium through intracoronary gene transfection; (2) HGF can improve the mobilization of CD117+/c-Met+ stem cells into ischemic myocardium. The amelioration effect of HGF on postinfarction heart failure could not be limited to stimulating angiogenesis, anti-apoptosis, anti-fibrosis, but was also involved in the recruitment of stem cells into myocardium.展开更多
It has been a decade since the monumental discovery of resident stem cells in the mammalian heart, and the following studies witnessed the continuous turnover of cardiomyocytes and vascular cells, maintaining the home...It has been a decade since the monumental discovery of resident stem cells in the mammalian heart, and the following studies witnessed the continuous turnover of cardiomyocytes and vascular cells, maintaining the homeostasis of the organ. Recently, the autologous administration of c-kit-positive cardiac stem cells in patients with ischemic heart failure has led to an incredible outcome; the left ventricular ejection fraction of the celltreated group improved from 30% at the baseline to 38% after one year and to 42% after two years of cell injection. The potential underlying mechanisms, before and after cell infusion, are explored and discussed in this article. Some of them are related to the intrinsic property of the resident stem cells, such as direct differentiation, paracrine action, and immunomodulatory function, whereas others involve environmental factors, leading to cellular reverse remodeling and to the natural selection of "juvenile" cells. It has now been demonstrated that cardiac stem cells for therapeutic purposes can be prepared from tiny biopsied specimens of the failing heart as well as from frozen tissues, which may remarkably expand the repertoire of the strategy against various cardiovascular disorders, including non-ischemic cardiomyopathy and congenital heart diseases. Further translational investigations are needed to explore these possibilities.展开更多
BACKGROUND Numerous studies investigated cell-based therapies for myocardial infarction(MI).The conflicting results of these studies have established the need for developing innovative approaches for applying cell-bas...BACKGROUND Numerous studies investigated cell-based therapies for myocardial infarction(MI).The conflicting results of these studies have established the need for developing innovative approaches for applying cell-based therapy for MI.Experimental studies on animal models demonstrated the potential of fresh,uncultured,unmodified,autologous adipose-derived regenerative cells(UAADRCs)for treating acute MI.In contrast,studies on the treatment of chronic MI(CMI;>4 wk post-MI)with UA-ADRCs have not been published so far.Among several methods for delivering cells to the myocardium,retrograde delivery into a temporarily blocked coronary vein has recently been demonstrated as an effective option.AIM To test the hypothesis that in experimentally-induced chronic myocardial infarction(CMI;>4 wk post-MI)in pigs,retrograde delivery of fresh,uncultured,unmodified,autologous adipose-derived regenerative cells(UA-ADRCs)into a temporarily blocked coronary vein improves cardiac function and structure.METHODS The left anterior descending(LAD)coronary artery of pigs was blocked for 180 min at time point T0.Then,either 18×106 UA-ADRCs prepared at“point of care”or saline as control were retrogradely delivered via an over-the-wire balloon catheter placed in the temporarily blocked LAD vein 4 wk after T0(T1).Effects of cells or saline were assessed by cardiac magnetic resonance(CMR)imaging,late gadolinium enhancement CMR imaging,and post mortem histologic analysis 10 wk after T0(T2).RESULTS Unlike the delivery of saline,delivery of UA-ADRCs demonstrated statistically significant improvements in cardiac function and structure at T2 compared to T1(all values given as mean±SE):Increased mean LVEF(UA-ADRCs group:34.3%±2.9%at T1 vs 40.4±2.6%at T2,P=0.037;saline group:37.8%±2.6%at T1 vs 36.2%±2.4%at T2,P>0.999),increased mean cardiac output(UA-ADRCs group:2.7±0.2 L/min at T1 vs 3.8±0.2 L/min at T2,P=0.002;saline group:3.4±0.3 L/min at T1 vs 3.6±0.3 L/min at T2,P=0.798),increased mean mass of the left ventricle(UA-ADRCs group:55.3±5.0 g at T1 vs 71.3±4.5 g at T2,P<0.001;saline group:63.2±3.4 g at T1 vs 68.4±4.0 g at T2,P=0.321)and reduced mean relative amount of scar volume of the left ventricular wall(UA-ADRCs group:20.9%±2.3%at T1 vs 16.6%±1.2%at T2,P=0.042;saline group:17.6%±1.4%at T1 vs 22.7%±1.8%at T2,P=0.022).CONCLUSION Retrograde cell delivery of UA-ADRCs in a porcine model for the study of CMI significantly improved myocardial function,increased myocardial mass and reduced the formation of scar tissue.展开更多
Cardiomyopathy is a pathological condition characterized by cardiac pump failure due to myocardial dysfunction and the major cause of advanced heart failure requiring heart transplantation.Although optimized medical t...Cardiomyopathy is a pathological condition characterized by cardiac pump failure due to myocardial dysfunction and the major cause of advanced heart failure requiring heart transplantation.Although optimized medical therapies have been developed for heart failure during the last few decades,some patients with cardiomyopathy exhibit advanced heart failure and are refractory to medical therapies.Desmosome,which is a dynamic cell-to-cell junctional component,maintains the structural integrity of heart tissues.Genetic mutations in desmo-somal genes cause arrhythmogenic cardiomyopathy(AC),a rare inheritable disease,and predispose patients to sudden cardiac death and heart failure.Recent advances in sequencing technologies have elucidated the genetic basis of cardiomyopathies and revealed that desmosome-related cardiomyopathy is concealed in broad cardiomyopathies.Among desmosomal genes,mutations in PKP2(which encodes PKP2)are most frequently identified in patients with AC.PKP2 deficiency causes various pathological cardiac phenotypes.Human cardiomyocytes differentiated from patient-derived induced pluripotent stem cells(iPSCs)in combination with genome editing,which allows the precise arrangement of the targeted genome,are powerful experimental tools for studying disease.This review summarizes the current issues associated with practical medicine for advanced heart failure and the recent advances in disease modeling using iPSC-derived cardiomyocytes targeting desmosome-related cardiomyopathy caused by PKP2 deficiency.展开更多
Although substantial advances have been made in treating ischemic heart disease and subsequent heart failure, the overall morbidity and mortality from these conditions remain high. Stem cell-based therapy has emerged ...Although substantial advances have been made in treating ischemic heart disease and subsequent heart failure, the overall morbidity and mortality from these conditions remain high. Stem cell-based therapy has emerged as a promising approach for prompting cardiac rejuvenation. Various cell types have been tested in the clinical arena, proving consistent safety results. As for efficiency outcomes, contradictory findings have been reported, partly due to inconsistency in study protocols but also due to poor survival, engraftment and differentiation of transplanted cells in the hostile milieu of the ischemic host tissue. Studies have varied in terms of route of delivery, type and dose of implanted stem cells, patient selection and randomization, and assessment of therapeutic effect. Founded on the main achievements and challenges within almost 20 years of research, a number of official documents have been published by leading experts in the field. Core recommendations have focused on developing and optimizing effective strategies to enrich cell retention and their regenerative potential. Issued consensus and position papers have stemmed from an unmet need to provide a harmonized framework for future research, resulting in improved therapeutic application of cell-based therapies for cardiac regeneration and repair.展开更多
In clinical cellular cardiomyoplasty, bone marrow cells and myoblasts are introduced mainly to ischemic cardiomyopathy tissue via several cell delivery systems, such as needle injection or catheter. These clinical stu...In clinical cellular cardiomyoplasty, bone marrow cells and myoblasts are introduced mainly to ischemic cardiomyopathy tissue via several cell delivery systems, such as needle injection or catheter. These clinical studies have demonstrated the safety and feasibility of this technique, but its effectiveness for treating heart failure, especially in the long term, is still under discussion. Neither of these cell types can differentiate into cardiomyocytes;rather, they improve the failing heart mainly by the paracrine effects of some cytokines, such as Hepatocyte growth factor (HGF) and Vascular endothelial growth factor (VEGF). Thus, many researchers have a great interest in stem cells, which exist in bone marrow, circulating blood, atrium, and adipose tissue, and can differentiate into cardiomyocytes. Although several stem cells with the potential to differentiate into various cell types have been reported, few can differentiate into cardiomyocytes. Moreover, beating cells that can demonstrate synchronized contraction with native cardiomyocytes are critical for the complete repair of severe heart failure. Therefore, stem cells with a high differentiation capacity should be explored for the goal of completely repairing severely damaged myocardium. In this review, we summarize the clinical protocols and basic experiments for cellular cardiomyoplasty using bone marrow cells, myoblasts, and other stem cells.展开更多
This article reviews the scientific development of angiomyogenesis using VEGF165-myoblasts, a patented biotechnology platform in regenerative medicine associated with Human Myoblast Genome Therapy (HMGT), also known a...This article reviews the scientific development of angiomyogenesis using VEGF165-myoblasts, a patented biotechnology platform in regenerative medicine associated with Human Myoblast Genome Therapy (HMGT), also known as Myoblast Transfer Therapy (MTT). VEGF165-myoblasts are the leading biologics for angiomyogenesis. This review also compares the safety and efficacy of VEGF165-myoblasts transduced using adenoviral vectors, nanoparticles or liposomes, in anticipation of their application in clinical trials in the near future. VEGF165-myoblasts are differentiated myogenic cells capable of extensive division, natural cell fusion, nucleus transfer, cell therapy and genome therapy. Following transplantation they survive, develop and function to revitalize degenerative myocardium in heart failure and ischemic cardiomyopathy animal studies. VEGF165-myoblasts are second generation products of HMGT/MTT which replenishes live cells and genetically repairs degenerating myofibers in Type II diabetes, muscular dystrophies, aging dysfunction and disfigurement. Myoblasts have also been used to enhance skin and muscle appearance in cosmetology. We envision that VEGF165-myoblasts will provide better outcome than their non-tranduced counterparts. Myoblasts are not stem cells. Their competitive advantages over stem cells are presented.展开更多
Objective: To study the amelioration effect of AdenovirusS-mediated human hepatocyte growth factor (AdsHGF) on postinfarction heart failure in the swine myocardial infarction model. Methods: Twelve SuZhong young s...Objective: To study the amelioration effect of AdenovirusS-mediated human hepatocyte growth factor (AdsHGF) on postinfarction heart failure in the swine myocardial infarction model. Methods: Twelve SuZhong young swine were randomly divided into 2 groups with 6 swine in each group: Ad5-HGF-treated group and null-Ad5 group. Four weeks after ligation at left anterior descending coronary artery in swine hearts, Ad5-HGF was transferred to the swine myocardium. Simultaneously, Gated myocardial perfusion imaging was performed to evaluate cardiac perfusion and heart function. After three weeks, Gated myocardial perfusion imaging was performed again, then the hearts were harvested and sectioned to examine the expression of HGF through ELISA. Results: High expression of human HGF was observed in the myocardium of Ad5-HGF-treated group. From 4 weeks to 7 weeks after operation, Left ventricular ejection fraction was increased in Ad5-HGF-treated group. The improvement in LVEF was greater in Ad5-HGF-treated group than that in null-Ad5 group at 7 weeks after operation. Cardiac perfusion was significantly improved in the Ad5-HGF-treated group. Conclusion: High expression of human HGF was observed in the myocardium through intracoronary transfection, which suggests that HGF can ameliorate heart function in swine with postinfarction heart failure.展开更多
基金Scientific Research Program of Higher Education Institute in Liaoning Province, No. 2008S248
文摘BACKGROUND: Transplantation of Akt-over-expressing mesenchymal stem ceils (Akt-MSCs) has been shown to repair infarcted myocardium and improve cardiac function. However, little is known about the therapeutic effects of Akt-MSCs on cardiac autonomic neuropathy in chronic heart failure (CHF). OBJECTIVE: The present study used adriamycin-induced CHF rat models to observe the effect of Akt-MSCs on cardiac autonomic nervous regeneration and the factors mediating this effect. DESIGN, TIME AND SETTING: A randomized, controlled animal experiment was performed at the Central Laboratory of Basic Medical College, China Medical University, between September 2008 and April 2009. MATERIALS: Rabbit anti-choline acetyltransferase (CHAT), growth associated protein-43 (GAP-43) synaptophysin (SYN) polyclonal antibodies and the secondary antibody (goat anti-rabbit IgG) were purchased from Boster, China. Cat-A-Kit assay system was provided by Amersham, USA. METHODS: (1) Adult rat MSCs were isolated and cultured for the preparation of Akt-MSCs. (2) Forty male Wistar rats were intramyocardially administered adriamycin at 2 mg/kg over 3 days for a total of five times and once a week for additional five times thereafter to establish CHF models. At 2 weeks after final adriamycin treatment, 34 successful CHF rat models were randomized to three groups: Akt-MSCs (n = 11), simple MSCs (s-MSCs, n =11), and control (n = 12). Each group was intravenously administered Akt-MSCs (2x106 cells in 100 IJL PBS), s-MSCs (2×10^6 cells in 100 μL PBS) or equal volume of phosphate buffered saline, once a day for a total of three times. MAIN OUTCOME MEASURES: At 4 weeks after final adriamycin treatment, myocardial norepinephrine (NE) content was detected using a Cat-A-Kit assay system. Myocardial CHAT, SYN and GAP-43 were performed by immunohistochemistry and Western blot analysis. Prior to, 2 and 4 weeks after adriamycin treatment, echocardiographic examination was performed and left ventricular ejection fraction (LVEF) was determined. RESULTS: Myocardial NE content, as well as SYN-positive and GAP-43-positive nerve fiber density and expression, and LVEF, was the greatest in the Akt-MSCs group, followed by the s-MSCs group, and lastly the control group (P 〈 0.05 or P 〈 0.01). ChAT expression was similar between Akt-MSCs and s-MSCs groups, but it was higher compared with the control group (P 〈 0.05). NE contents were negatively correlated to LVEF (r = -0.64, P = 0.015). CONCLUSION: Transplantation of MSCs, in particular Akt-MSCs, promotes cardiac nervous regeneration in failing heart, which might be mediated by GAP-43.
基金Supported by the Medical Key Member of "Medicine Renaissance Projects of Jiangsu Province" to Yang Z J and the Chinese National High Technology Develop-ment Program (863 Program) (Grant No. 2004CB518801)
文摘We aim to study the amelioration effect of adenovirus5-mediated human hepatocyte growth factor gene transfer on postinfarction heart failure in swine model. Twelve Suzhong young swine were randomly divided into 2 groups of 6 pigs each: Ad5-HGF group and mock-vector Ad5 group. Four weeks after ligation of the left anterior descending coronary artery, Ad5-HGF was intracoronarily transferred into the myocardium. Simultaneously, gate cardiac perfusion imaging was performed to evaluate the heart function. Three weeks later, gate cardiac perfusion imaging was performed again, then the hearts were removed and sectioned for immunohistochemical examination to illustrate the effects of Ad5-HGF on infarcted myocardium. The expression of HGF was examined by ELISA. The results were: (1) compared with the mock-vector Ad5 group, high expression of human HGF was observed in the myocardium of Ad5-HGF group; (2) in the Ad5-HGF group, the number of CD117+ cells co-expressing c-Met per mm2 was significantly larger; (3) the improvement in LVEF was greater in the Ad5-HGF group than in the mock-vector Ad5 group. We concluded that: (1) high expression of human HGF was observed in the myocardium through intracoronary gene transfection; (2) HGF can improve the mobilization of CD117+/c-Met+ stem cells into ischemic myocardium. The amelioration effect of HGF on postinfarction heart failure could not be limited to stimulating angiogenesis, anti-apoptosis, anti-fibrosis, but was also involved in the recruitment of stem cells into myocardium.
基金The Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research(C),No.25461118
文摘It has been a decade since the monumental discovery of resident stem cells in the mammalian heart, and the following studies witnessed the continuous turnover of cardiomyocytes and vascular cells, maintaining the homeostasis of the organ. Recently, the autologous administration of c-kit-positive cardiac stem cells in patients with ischemic heart failure has led to an incredible outcome; the left ventricular ejection fraction of the celltreated group improved from 30% at the baseline to 38% after one year and to 42% after two years of cell injection. The potential underlying mechanisms, before and after cell infusion, are explored and discussed in this article. Some of them are related to the intrinsic property of the resident stem cells, such as direct differentiation, paracrine action, and immunomodulatory function, whereas others involve environmental factors, leading to cellular reverse remodeling and to the natural selection of "juvenile" cells. It has now been demonstrated that cardiac stem cells for therapeutic purposes can be prepared from tiny biopsied specimens of the failing heart as well as from frozen tissues, which may remarkably expand the repertoire of the strategy against various cardiovascular disorders, including non-ischemic cardiomyopathy and congenital heart diseases. Further translational investigations are needed to explore these possibilities.
基金Supported by Alliance of Cardiovascular Researchers(New Orleans,LA 70102,United States),No.2013-AH-01(to Haenel A)
文摘BACKGROUND Numerous studies investigated cell-based therapies for myocardial infarction(MI).The conflicting results of these studies have established the need for developing innovative approaches for applying cell-based therapy for MI.Experimental studies on animal models demonstrated the potential of fresh,uncultured,unmodified,autologous adipose-derived regenerative cells(UAADRCs)for treating acute MI.In contrast,studies on the treatment of chronic MI(CMI;>4 wk post-MI)with UA-ADRCs have not been published so far.Among several methods for delivering cells to the myocardium,retrograde delivery into a temporarily blocked coronary vein has recently been demonstrated as an effective option.AIM To test the hypothesis that in experimentally-induced chronic myocardial infarction(CMI;>4 wk post-MI)in pigs,retrograde delivery of fresh,uncultured,unmodified,autologous adipose-derived regenerative cells(UA-ADRCs)into a temporarily blocked coronary vein improves cardiac function and structure.METHODS The left anterior descending(LAD)coronary artery of pigs was blocked for 180 min at time point T0.Then,either 18×106 UA-ADRCs prepared at“point of care”or saline as control were retrogradely delivered via an over-the-wire balloon catheter placed in the temporarily blocked LAD vein 4 wk after T0(T1).Effects of cells or saline were assessed by cardiac magnetic resonance(CMR)imaging,late gadolinium enhancement CMR imaging,and post mortem histologic analysis 10 wk after T0(T2).RESULTS Unlike the delivery of saline,delivery of UA-ADRCs demonstrated statistically significant improvements in cardiac function and structure at T2 compared to T1(all values given as mean±SE):Increased mean LVEF(UA-ADRCs group:34.3%±2.9%at T1 vs 40.4±2.6%at T2,P=0.037;saline group:37.8%±2.6%at T1 vs 36.2%±2.4%at T2,P>0.999),increased mean cardiac output(UA-ADRCs group:2.7±0.2 L/min at T1 vs 3.8±0.2 L/min at T2,P=0.002;saline group:3.4±0.3 L/min at T1 vs 3.6±0.3 L/min at T2,P=0.798),increased mean mass of the left ventricle(UA-ADRCs group:55.3±5.0 g at T1 vs 71.3±4.5 g at T2,P<0.001;saline group:63.2±3.4 g at T1 vs 68.4±4.0 g at T2,P=0.321)and reduced mean relative amount of scar volume of the left ventricular wall(UA-ADRCs group:20.9%±2.3%at T1 vs 16.6%±1.2%at T2,P=0.042;saline group:17.6%±1.4%at T1 vs 22.7%±1.8%at T2,P=0.022).CONCLUSION Retrograde cell delivery of UA-ADRCs in a porcine model for the study of CMI significantly improved myocardial function,increased myocardial mass and reduced the formation of scar tissue.
基金Supported by JSPS KAKENHI,No.20K21602,No.21H02915,and No.22K19526the Japan Agency for Medical Research and Development,No.21bm0804008h0005+2 种基金the Cell Science Research Foundationthe Grant for Basic Research of the Japanese Circulation Society(2018)SENSHIN Medical Research Foundation.
文摘Cardiomyopathy is a pathological condition characterized by cardiac pump failure due to myocardial dysfunction and the major cause of advanced heart failure requiring heart transplantation.Although optimized medical therapies have been developed for heart failure during the last few decades,some patients with cardiomyopathy exhibit advanced heart failure and are refractory to medical therapies.Desmosome,which is a dynamic cell-to-cell junctional component,maintains the structural integrity of heart tissues.Genetic mutations in desmo-somal genes cause arrhythmogenic cardiomyopathy(AC),a rare inheritable disease,and predispose patients to sudden cardiac death and heart failure.Recent advances in sequencing technologies have elucidated the genetic basis of cardiomyopathies and revealed that desmosome-related cardiomyopathy is concealed in broad cardiomyopathies.Among desmosomal genes,mutations in PKP2(which encodes PKP2)are most frequently identified in patients with AC.PKP2 deficiency causes various pathological cardiac phenotypes.Human cardiomyocytes differentiated from patient-derived induced pluripotent stem cells(iPSCs)in combination with genome editing,which allows the precise arrangement of the targeted genome,are powerful experimental tools for studying disease.This review summarizes the current issues associated with practical medicine for advanced heart failure and the recent advances in disease modeling using iPSC-derived cardiomyocytes targeting desmosome-related cardiomyopathy caused by PKP2 deficiency.
文摘Although substantial advances have been made in treating ischemic heart disease and subsequent heart failure, the overall morbidity and mortality from these conditions remain high. Stem cell-based therapy has emerged as a promising approach for prompting cardiac rejuvenation. Various cell types have been tested in the clinical arena, proving consistent safety results. As for efficiency outcomes, contradictory findings have been reported, partly due to inconsistency in study protocols but also due to poor survival, engraftment and differentiation of transplanted cells in the hostile milieu of the ischemic host tissue. Studies have varied in terms of route of delivery, type and dose of implanted stem cells, patient selection and randomization, and assessment of therapeutic effect. Founded on the main achievements and challenges within almost 20 years of research, a number of official documents have been published by leading experts in the field. Core recommendations have focused on developing and optimizing effective strategies to enrich cell retention and their regenerative potential. Issued consensus and position papers have stemmed from an unmet need to provide a harmonized framework for future research, resulting in improved therapeutic application of cell-based therapies for cardiac regeneration and repair.
文摘In clinical cellular cardiomyoplasty, bone marrow cells and myoblasts are introduced mainly to ischemic cardiomyopathy tissue via several cell delivery systems, such as needle injection or catheter. These clinical studies have demonstrated the safety and feasibility of this technique, but its effectiveness for treating heart failure, especially in the long term, is still under discussion. Neither of these cell types can differentiate into cardiomyocytes;rather, they improve the failing heart mainly by the paracrine effects of some cytokines, such as Hepatocyte growth factor (HGF) and Vascular endothelial growth factor (VEGF). Thus, many researchers have a great interest in stem cells, which exist in bone marrow, circulating blood, atrium, and adipose tissue, and can differentiate into cardiomyocytes. Although several stem cells with the potential to differentiate into various cell types have been reported, few can differentiate into cardiomyocytes. Moreover, beating cells that can demonstrate synchronized contraction with native cardiomyocytes are critical for the complete repair of severe heart failure. Therefore, stem cells with a high differentiation capacity should be explored for the goal of completely repairing severely damaged myocardium. In this review, we summarize the clinical protocols and basic experiments for cellular cardiomyoplasty using bone marrow cells, myoblasts, and other stem cells.
文摘This article reviews the scientific development of angiomyogenesis using VEGF165-myoblasts, a patented biotechnology platform in regenerative medicine associated with Human Myoblast Genome Therapy (HMGT), also known as Myoblast Transfer Therapy (MTT). VEGF165-myoblasts are the leading biologics for angiomyogenesis. This review also compares the safety and efficacy of VEGF165-myoblasts transduced using adenoviral vectors, nanoparticles or liposomes, in anticipation of their application in clinical trials in the near future. VEGF165-myoblasts are differentiated myogenic cells capable of extensive division, natural cell fusion, nucleus transfer, cell therapy and genome therapy. Following transplantation they survive, develop and function to revitalize degenerative myocardium in heart failure and ischemic cardiomyopathy animal studies. VEGF165-myoblasts are second generation products of HMGT/MTT which replenishes live cells and genetically repairs degenerating myofibers in Type II diabetes, muscular dystrophies, aging dysfunction and disfigurement. Myoblasts have also been used to enhance skin and muscle appearance in cosmetology. We envision that VEGF165-myoblasts will provide better outcome than their non-tranduced counterparts. Myoblasts are not stem cells. Their competitive advantages over stem cells are presented.
基金The Medical Key Personproject of the 135 Projects of Jiangsu Province(R2002043)
文摘Objective: To study the amelioration effect of AdenovirusS-mediated human hepatocyte growth factor (AdsHGF) on postinfarction heart failure in the swine myocardial infarction model. Methods: Twelve SuZhong young swine were randomly divided into 2 groups with 6 swine in each group: Ad5-HGF-treated group and null-Ad5 group. Four weeks after ligation at left anterior descending coronary artery in swine hearts, Ad5-HGF was transferred to the swine myocardium. Simultaneously, Gated myocardial perfusion imaging was performed to evaluate cardiac perfusion and heart function. After three weeks, Gated myocardial perfusion imaging was performed again, then the hearts were harvested and sectioned to examine the expression of HGF through ELISA. Results: High expression of human HGF was observed in the myocardium of Ad5-HGF-treated group. From 4 weeks to 7 weeks after operation, Left ventricular ejection fraction was increased in Ad5-HGF-treated group. The improvement in LVEF was greater in Ad5-HGF-treated group than that in null-Ad5 group at 7 weeks after operation. Cardiac perfusion was significantly improved in the Ad5-HGF-treated group. Conclusion: High expression of human HGF was observed in the myocardium through intracoronary transfection, which suggests that HGF can ameliorate heart function in swine with postinfarction heart failure.