期刊文献+
共找到47,459篇文章
< 1 2 250 >
每页显示 20 50 100
Research progress in tumor angiogenesis and drug resistance in breast cancer
1
作者 Jiancheng Mou Chenhong Li +2 位作者 Qinghui Zheng Xuli Meng Hongchao Tang 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第7期571-585,共15页
Angiogenesis is considered a hallmark pathophysiological process in tumor development. Aberrant vasculature resulting from tumor angiogenesis plays a critical role in the development of resistance to breast cancer tre... Angiogenesis is considered a hallmark pathophysiological process in tumor development. Aberrant vasculature resulting from tumor angiogenesis plays a critical role in the development of resistance to breast cancer treatments, via exacerbation of tumor hypoxia, decreased effective drug concentrations within tumors, and immune-related mechanisms. Antiangiogenic therapy can counteract these breast cancer resistance factors by promoting tumor vascular normalization. The combination of antiangiogenic therapy with chemotherapy, targeted therapy, or immunotherapy has emerged as a promising approach for overcoming drug resistance in breast cancer. This review examines the mechanisms associated with angiogenesis and the interactions among tumor angiogenesis, the hypoxic tumor microenvironment, drug distribution, and immune mechanisms in breast cancer. Furthermore, this review provides a comprehensive summary of specific antiangiogenic drugs, and relevant studies assessing the reversal of drug resistance in breast cancer. The potential mechanisms underlying these interventions are discussed, and prospects for the clinical application of antiangiogenic therapy to overcome breast cancer treatment resistance are highlighted. 展开更多
关键词 ANGIOgeneSIS breast cancer CHEMOTHERAPY drug resistance vascular normalization immunologic therapy tumor microenvironment(TME)
下载PDF
A Pleiotropic Drug Resistance Family Protein Gene Is Required for Rice Growth, Seed Development and Zinc Homeostasis
2
作者 LI Chao LI He +1 位作者 ZHANG Xianduo YANG Zhimin 《Rice science》 SCIE CSCD 2023年第2期127-137,I0035-I0038,共15页
Zinc(Zn) is an essential mineral element for plant growth and development. Zn deficiency in crops frequently occurs in many types of soils. It is therefore crucial to identify genetic resources linking Zn acquisition ... Zinc(Zn) is an essential mineral element for plant growth and development. Zn deficiency in crops frequently occurs in many types of soils. It is therefore crucial to identify genetic resources linking Zn acquisition traits and development of crops with improved Zn-use efficiency for sustainable crop production. In this study, we functionally identified a rice uncharacterized ABCG(ATP-binding cassette G-subfamily) gene encoding a PDR20(pleiotropic drug resistance 20) metal transporter for mediation of rice growth, seed development and Zn accumulation. OsPDR20 was localized to the plasma membrane, but it was not transcriptionally induced under Zn deficiency, rather was sufficiently up-regulated under high level of Zn stress. Yeast(Saccharomyces cerevisiae) transformed with OsPDR20 displayed a relatively lower Zn accumulation with attenuated cellular growth, suggesting that OsPDR20 had an activity for Zn transport. Knocking-down OsPDR20 by RNA interference(RNAi) compromised rice growth with shorter plant height and decreased biomass in rice plantlets grown under hydroponic media. Zn concentration in the roots of OsPDR20 knocked-down rice lines declined under Zn deficiency, while they remained unchanged compared with the wild type under normal Zn supply. A rice lifelong field trial demonstrated that OsPDR20 mutation impaired the capacity of seed development, with shortened panicle and seed length, compromised spikelet fertility, and reduced grain number per plant or grain weight per unit area. Interestingly, OsPDR20 mutation elevated the accumulation of Zn in husk and brown rice over the wild type. Overall, this study pointed out that OsPDR20 is fundamentally required for rice growth and seed development through Zn transport and homeostasis. 展开更多
关键词 OsPDR20 zinc transport RICE seed development ABCG53 pleiotropic drug resistance
下载PDF
EXPRESSION AND CLINICAL SIGNIFICANCE OF MULTIDRUG RESISTANCE GENE AND MULTIDRUG RESISTANCE-ASSOCIATEDPROTEIN GENE IN ACUTE LEUKEMIA
3
作者 赖永榕 马劼 +2 位作者 卢玉英 牛威林 向直富 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 1999年第3期192-195,共4页
Objective: To evaluate the expression and clinical significance of multidrug resistance gene (mdr1) and multidrug resistance-associated protein (MRP) gene in acute leukemia. Methods: The expression of mdr1 and MRP ass... Objective: To evaluate the expression and clinical significance of multidrug resistance gene (mdr1) and multidrug resistance-associated protein (MRP) gene in acute leukemia. Methods: The expression of mdr1 and MRP assay in 55 patients with acute leukemia (AL) by reverse transcription polymerase chain reaction (RT-PCR). Results: The mdr1 and MRP gene expression levels in the relapsed AL and the blastic plastic phases of CML were significantly higher than those in the newly diagnostic AL and controls. The mdr1 and MRP gene expression levels in the clinical drug-resistant group were significantly higher than those in the non-drug-resistant group. The complete remission (CR) rate in patients with high mdr1 expression (14.3%) was significantly lower than that with low mdr1 expression (57.5%); similarly the CR rate in patients with high MRP level was also lower than that with low MRP level. Using both high expression of mdr1 and MRP gene as the indicator for evaluating multidrug resistance (MDR), the positive predictive value and accuracy increased in comparison with single gene high expression. Conclusion: Elevated level of mdr1 or MRP gene expression might be unfavorable prognostic factors for AL patient and may be used as an important index for predicting drug-resistance and relapse in AL patient. Measuring both mdr1 and MRP gene expression would increase accuracy and sensibility of evaluating MDR in acute leukemia. 展开更多
关键词 Acute leukemia Multidrug resistance gene Multidrug resistance-associated protein gene PCR
下载PDF
Association of single nucleotide polymorphisms of brain-derived neurotrophic factor gene and multidrug resistance 1 gene to refractory epilepsy in Chinese Han children 被引量:2
4
作者 Guangxin Wang Zuocheng Yang +1 位作者 Ruifeng Jin Ruopeng Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第11期901-906,共6页
BACKGROUND: There are two hypotheses for the underlying cause of refractory epilepsy: "target" and "transport". Studies have shown that brain-derived neurotrophic factor (BDNF) is over-expressed in refractory ... BACKGROUND: There are two hypotheses for the underlying cause of refractory epilepsy: "target" and "transport". Studies have shown that brain-derived neurotrophic factor (BDNF) is over-expressed in refractory epilepsy. Multidrug resistance 1 (MDR1) gene encodes for P-glycoprotein, the primary ATP-binding cassette transporter in the human body. Some single nucleotide polymorphisms of the MDR1 gene have been associated with refractory epilepsy. OBJECTIVE: To investigate the association between BDNF gene C270T polymorphism and MDR1 T-129C polymorphism with refractory epilepsy in Chinese Han children through the use of polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis. DESIGN, TIME AND SETTING: A case-control, genetic association study was performed at the Central Laboratory, Third Xiangya Hospital of Central South University from June 2005 to November 2007. PARTICIPANTS: A total of 84 cases of unrelated children with epilepsy, including 41 cases of refractory epilepsy and 43 cases of drug-responsive epilepsy, were enrolled. An additional 30 healthy, Chinese Han children, whose ages and gender matched the refractory epilepsy patients, were selected as normal controls. METHODS: Venous blood was collected and genomic DNA was extracted from the blood specimens. C270T polymorphism in BDNF gene and T-129C polymorphism in MDR1 gene were genotyped using PCR-restriction fragment length polymorphism analysis. Association analysis using the Ftest and Chi-square test was statistically performed between C270T polymorphism in BDNF gene and T-129C polymorphism in MDR1 gene and refractory epilepsy. MAIN OUTCOME MEASURES: The distribution of genotypes and allele frequencies of C270T polymorphism in BDNF gene and T-129C polymorphism in MDR1 gene. RESULTS: The distribution of CC, CT, and TT genotypes, as well as C and T allele frequencies, in the BDNF gene was not significantly different between the refractory epilepsy group, drug-responsive epilepsy group, or the normal control group (P 〉 0.05). The distribution of TT genotype and T allele frequencies of the MDR1 gene was significantly different in the refractory epilepsy group compared with the drug-responsive epilepsy and normal control groups (P 〈 0.05). Comparison of haplotype combinations demonstrated that there were no significant differences in combinations of TT+CC, -FI-+CT, TC+CC, and TC+CT among the three groups (P 〉 0.05). CONCLUSION: C270T polymorphism of the BDNF gene was not associated with refractory epilepsy in Chinese Han children, but T-129C polymorphism in the MDR1 gene was associated with refractory epilepsy in Chinese Han children. The TT genotype and T allele frequencies could serve as susceptibility loci for refractory epilepsy. Interactions between C270T in BDNF gene and T-129C in MDR1 gene were not observed in refractory epilepsy in Chinese Han children. 展开更多
关键词 brain-derived neurotrophic factor gene multidrug resistance 1 gene single nucleotide polymorphisms CHILDREN refractory epilepsy
下载PDF
Mobile genetic elements facilitate the transmission of antibiotic resistance genes in multidrug-resistant Enterobacteriaceae from duck farms
5
作者 Xin’er Zheng Dingting Xu +5 位作者 Jinchang Yan Min Qian Peng Wang Davood Zaeim Jianzhong Han Daofeng Qu 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期729-735,共7页
Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms i... Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms in Zhejiang Province,China,were investigated.A total of 215 isolates were identified as Escherichia coli(64.65%),Klebsiella pneumoniae(12.09%),Proteus mirabilis(10.23%),Salmonella(8.84%),and Enterobacter cloacae(4.19%).Meanwhile,all isolates were resistant to at least two antibiotics.Most isolates carried tet(A)(85.12%),blaTEM(78.60%)and sul1(67.44%)resistance genes.Gene co-occurrence analysis showed that the resistance genes were associated with IS26 and integrons.A conjugative IncFII plasmid pSDM004 containing all the above MGEs was detected in Proteus mirabilis isolate SDM004.This isolate was resistant to 18 antibiotics and carried the blaNDM-5 gene.MGEs,especially plasmids,are the primary antibiotic resistance gene transmission route in duck farms.These findings provide a theoretical basis for the rational use of antibiotics in farms which are substantial for evaluating public health and food safety. 展开更多
关键词 Duck farm Mobile genetic element Antibiotic resistance gene PLASMID Food safety
下载PDF
Expression of multidrug resistance 1 gene and C3435T genetic polymorphism in peripheral blood of patients with intractable epilepsy 被引量:1
6
作者 Xueping Zheng Lan Tan +2 位作者 Jinghui Song Yan Wang Yanping Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第11期1269-1272,共4页
BACKGROUND: Increased expression of multidrug resistance 1 (MDR1) mRNA in peripheral blood of patients with intractable epilepsy is not due to epilepsy drugs, but epilepsy behavior. Monitoring MDR1 expression in pe... BACKGROUND: Increased expression of multidrug resistance 1 (MDR1) mRNA in peripheral blood of patients with intractable epilepsy is not due to epilepsy drugs, but epilepsy behavior. Monitoring MDR1 expression in peripheral blood is a target for MDR1 gene evaluation. OBJECTIVE: To investigate the influence of antiepileptic drugs and seizures on MDR expression in intractable epilepsy, and to analyze the genetic polymorphisms of C3435T in the MDRl gene. DESIGN, TIME AND SETTING: Factorial designs and comparative observations at the experimental center of the Affiliated Hospital of Qingdao Medical College, Qingdao University between October 2003 and October 2004. PARTICIPANTS: A total of 120 subjects were recruited from the epilepsy clinical department of the Affiliated Hospital of Qingdao Medical College. Four groups (n = 30) were classified according to statistical factorial design: intractable epilepsy, treatment response, no treatment, and normal control groups. METHODS: One-step semi-quantitative reverse-transcription polymerase chain reaction technology was used to test expressions of the MDR1 gene in 120 subjects. C3435T polymorphisms in intractable epilepsy group and normal control groups were analyzed by polymerase chain reaction-restriction fragment length polymorphism. MAIN OUTCOME MEASURES: Expression of MDR1 mRNA in the four groups, and C3435T genetic polymorphisms in intractable epilepsy and normal control groups. RESULTS: MDRl gene expression was increased in the intractable epilepsy group, due to the factor seizures, but not the antiepileptic drugs. However, the interaction between the two factors was not statistically significant. Of the 30 subjects in the intractable epilepsy group, the following genotypes were exhibited: 3 (10%) C/C genotype, 9 (30%) C/T genotype, and 18 (60%) T/T genotype at the site of C3435T, while 4 (13%), 10 (33%), and 16 (53%) subjects were determined to express these genotypes in the normal control group, respectively. C and T allele frequency were 25% and 75% in the intractable epilepsy group, and 30% and 70% in the normal control group, respectively. However, there was no statistical difference between the groups. CONCLUSION: Results demonstrated that seizures, not antiepileptic drugs, induced MDR1 gene expression in intractable epilepsy. Genetic polymorphisms of C3435T in the MDR1 gene did not contribute to the development of multidrug resistance in patients with intractable epilepsy. 展开更多
关键词 genetic polymorphism intractable epilepsy MDR1 gene multidrug resistance peripheral blood P-GLYCOPROTEIN
下载PDF
Analysis of The Correlation Between inhA Gene Mutation and Resistance to Protionamide in Drug-Resistant Mycobacterium Tuberculosis
7
作者 Xulin Huang Tian Zheng Shutao Li 《Journal of Clinical and Nursing Research》 2024年第4期132-136,共5页
Objective: To investigate the characteristics of katG and inhA gene mutations in multidrug-resistant tuberculosis (MDR-TB), pre-extensively drug-resistant tuberculosis (preXDR-TB), and their correlation with resistanc... Objective: To investigate the characteristics of katG and inhA gene mutations in multidrug-resistant tuberculosis (MDR-TB), pre-extensively drug-resistant tuberculosis (preXDR-TB), and their correlation with resistance to protionamide (Pto). Methods: A total of 229 patients with MDR-TB and pre-XDR-TB diagnosed in the Eighth Affiliated Hospital of Xinjiang Medical University from January 2020 to February 2024 were selected to analyze the characteristics of katG and inhA mutations in MTB clinical isolates and their correlation with Pto resistance. Results: The mutation rate of katG (with or without inhA mutation) was 85.2%. The mutation rates in MDR-TB and pre-XDR-TB were 87.4% (125/143) and 81.4% (70/86), respectively. The mutation rate of inhA (including katG mutation) was 14.8% (34/229), which was 12.6% (18/143) and 18.6% (16/86) in MDR-TB and pre-XDR-MTB, respectively. There was no difference in mutation (P > 0.05). Conclusion: The total resistance rate to Pto in 229 strains was 8.7% (20/229), which was 8.4% (12/143) and 9.3% (8/86) in MDR-TB and pre-XDR-TB, respectively. Among the inhA mutant strains, 13 were resistant to the Pto phenotype, and the resistance rate was 65% (13/20). In MDR-TB and pre-XDR-TB strains resistant to Pto, inhA gene mutations occurred in 66.7% (6/9) and 63.6% (7/11), respectively. The resistance rates of MDR-MTB and pre-XDR-TB strains without inhA gene mutation to Pto were 2.4% (3/125) and 5.7% (4/70), respectively. 展开更多
关键词 TUBERCULOSIS Anti-multiple drug resistance Prothionamide gene MUTATIONS
下载PDF
Liposome-mediated Functional Expression of Multiple Drug Resistance Gene in Human Bone Marrow CD34^+ Cells
8
作者 曹文静 邹萍 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2004年第3期214-215,235,共3页
Summary: The expression and functional activity of multiple drug resistance (MDR1) gene in human normal bone marrow CD34+ cells was observed. Human normal bone marrow CD34+ cells were enriched with magnetic cell sorti... Summary: The expression and functional activity of multiple drug resistance (MDR1) gene in human normal bone marrow CD34+ cells was observed. Human normal bone marrow CD34+ cells were enriched with magnetic cell sorting (MACS) system, and then liposome-mediated MDR1 gene was transferred into bone marrow CD34+ cells. Fluorescence-activated cell sorter was used to evaluate the expression and functional activity of P-glycoprotein (P-gp) encoded by MDR1 gene. It was found that the purity of bone marrow CD34+ cells was approximately (91±4.56) % and recovery rate was (72.3±2.36) % by MACS. The expression of P-gp in the transfected CD34+cells was obviously higher than that in non-transfected CD34+ cells. The amount of P-gp in non-transfected CD34+ cells was (11.2±2.2) %, but increased to (23.6±2.34) % 48 h after gene transfection (P<0.0l). The amount of P-gp was gradually decreased to the basic level one week later. The accumulation and extrusion assays showed that the overexpression of P-gp could efflux Rh-123 out of cells and there was low fluorescence within the transfected cells. The functional activity of P-gp could be inhibited by 10 μg/ml verapamil. It was suggested that the transient and highly effective expression and functional activity of P-gp could be obtained by liposome-mediated MRD1 transferring into human normal bone marrow CD34+ cells. 展开更多
关键词 gene transfection hematopoietic progenitor cell multiple drug resistance gene P-GLYCOPROTEIN
下载PDF
Reversal of Multidrug Resistance and Inhibition of Phosphorylation of AKT in Human Ovarian Cancer Cell Line by Wild-type PTEN Gene 被引量:7
9
作者 吴卉娟 翁丹卉 +2 位作者 邢辉 卢运萍 马丁 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2007年第6期713-716,共4页
The reversing effect of wild-type PTEN gene on resistance of C 13K cells to cisplatin and its inhibitory effect on the phosphorylation of protein kinase B (AKT) were studied. The expression of PTEN mRNA and protein ... The reversing effect of wild-type PTEN gene on resistance of C 13K cells to cisplatin and its inhibitory effect on the phosphorylation of protein kinase B (AKT) were studied. The expression of PTEN mRNA and protein in OV2008 cells and C13K cells were semi-quantitatively detected by using RT-PCR and Western blotting. Recombinant eukaryotic expression plasmid containing human wild-type PTEN gene was transfected into C13K cells by lipofectamine2000. The expression of PTEN mRNA was monitored by RT-PCR and the expression of PTEN, Akt, p-Akt protein were ana- lyzed by Western blotting in PTEN-transfected and non-transfected C13K cells. Proliferation and chemosensitivity of cells to DDP were measured by MTT, and cell apoptosis was detected by flow cytometry after treatment with cisplatin. The expression of PTEN mRNA and protein in OV2008 cells were significantly higher than those in C13K cells. After transfection with PTEN gene for 48 h, the expression of PTEN mRNA and protein in C 13K cells were 2.04 ± 0.10, 0.94± 0.04 respectively and the expression of p-Akt protein ( 0.94± 0.07) was lower than those in control groups (1.68 ±0.14, 1.66± 0.10) (P〈 0.05). The IC50 of DDP to C 13 K cells transfected with PTEN (7.2± 0.3 la mol/L) was obviously lower than those of empty-vector transfected cells and non-transfected cells (12.7±0.4 lamol/1, 13.0±0.3 lamol/L) (P〈0.05). The apopototis ratio of wild-type PTEN-transfected, empty vector transfected and non-transfected C13K cells were (41.65___0.87)%, (18.61 ±0.70)% and (15.28±0.80)% respectively, and the difference was statistically significant (P〈0.05). PTEN gene plays an important role in ovarian cancer multidrug resistance. Transfection of PTEN could increase the expression of PTEN and restore drug sensitivity to cisplatin in human ovarian cancer cell line C 13K with multidrug-resistance by decreasing the expression of p-Akt. 展开更多
关键词 multidrug resistance PHOSPHORYLATION AKT ovarian cancer cells wild-type PTEN gene
下载PDF
Anticancer Drug Resistance of HeLa Cells Transfected With Rat Glutathione S-transferase pi Gene 被引量:2
10
作者 WEICAO YANMENG +3 位作者 QIANGWEI ZHAO-HUISHI LI-MEIJU FU-DEFANG 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2003年第2期157-162,共6页
To establish a cytologic expressing system of rat glutathione S-transferase pi (GST-pi) cDNA for detecting the resistance of HeLa cells to anticancer drugs. Methods The assessment was made with various anticancer dr... To establish a cytologic expressing system of rat glutathione S-transferase pi (GST-pi) cDNA for detecting the resistance of HeLa cells to anticancer drugs. Methods The assessment was made with various anticancer drugs (adriamycin, mitomycin, cisplatinum and vincristine) that showed different cytotoxicities in transfectant HeLa cells with pSV-GT containing rat GST-pi cDNA (HeLa/pSV-GT) or control pSV-neo (HeLa/pSV-neo). Expression levels of GST-pi mRNA in HeLa/pSV-GT and HeLa/pSV-neo were measured by in situ hybridization using Digoxin-labelled cDNA probe. Results HeLa/pSV-GT expressed significantly high degree of GST-pi mRNA, whereas both HeLa/pSV-neo and HeLa cells had very low expression. Cytotoxicities of HeLa/pSV-GT and HeLa/pSV-neo with 4 anticancer drugs were measured by MTT assay. Drug concentrations for yielding 50% inhibition (IC50) in HeLa/pSV-GT by adriamycin, mitomycin and cisplatinum were 70.13 靏/mL, 10.95 靏/mL and 16.52 靏/mL, respectively. In contrast, IC50 in HeLa/pSV-neo was 10.34 靏/mL, 7.48 靏/mL and 13.70 靏/mL, respectively. The cytotoxicities of vincristine on both HeLa/pSV-GT and HeLa/pSV-neo were not significantly different. Conclusions Our findings suggest that HeLa/pSV-GT containing rat GST-pi cDNA is resistant to some anticancer drugs due to overexpression of GST-pi. Also, HeLa/pSV-GT cell line could serve as a useful cytogenetic model for further research. 展开更多
关键词 Glutathione S-transferase P1 Enhancer element Trans-acting factor gene transfection drug resistance Tumor cell In situ hybridization
下载PDF
Clinical Study of Multi-drug Resistance Gene(MDR1) Expression in Primary Ovarian Cancer 被引量:1
11
作者 王世宣 蔡桂茹 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 1998年第1期58-60,共3页
This study was designed to measure the multi-drug resistance gene (MDR1) mRNA content and analyze clinical relationship between MDR1 expression and drug resistance in primary ovarian cancer. Reverse transcription PCR... This study was designed to measure the multi-drug resistance gene (MDR1) mRNA content and analyze clinical relationship between MDR1 expression and drug resistance in primary ovarian cancer. Reverse transcription PCR (RT-PCR) was used to measure MDR1 mRNA content in biopsy sample of 31 primary ovarian cancers (experimental group) and 30 gynecological tumors (control group). The level of 95.2% (20/21) MDR1 expression was relatively low, and the detected rate of MDR1 expression was 67.7%(21/31) in experimental group,which was higher than that in control group (40.0%, P<0.05). The differences of MDR1 expression between the effective group and no effect group after combined chemotherapy was significant (P<0.05). No significant relationship was found between MDR1 expression and clinical stage or histological classification or grade of differentiation in experimental group. We are led to concluded that primary ovarian cancers have drug-resistance clones which might express MDR1 spontaneously and expression of MDR1 may be used as a prognostic and predictive indicator for clinical response of ovarian cancers to combined chemotherapy. 展开更多
关键词 ovarian neoplasma gene drug resistance CHEMOTHERAPY PCR
下载PDF
Expression and Prognostic Significance of Multidrug Resistance Associated Protein (MRP) Gene in Non-small Cell Lung Cancer by in Site Hybridization 被引量:1
12
作者 单根法 钟竑 +4 位作者 张辅贤 李国庆 隆桂麟 顾鹤定 戚晓敏 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2000年第3期63-66,共4页
Objective: To study on the effect of MRP gene overexpression on prognosis of patients with non-small lung cancer (NSCLC). Methods: Paraffin-embedded tissues from 47 cases of NSCLC who had undergone radical tumor rese... Objective: To study on the effect of MRP gene overexpression on prognosis of patients with non-small lung cancer (NSCLC). Methods: Paraffin-embedded tissues from 47 cases of NSCLC who had undergone radical tumor resection were examined for expression of MRP gene mRNA by in situ hybridization using labelled digoxigenin probes combined with immunohistochemistry. All the patients were retrospectively followed-up. Results: All of the 47 lung cancer specimens were found to have overexpression of MRP gene mRNA. It was significantly correlated with patients' survival time, response to chemotherapy, recurrence or metastases after surgery, but was not correlated with histology, tumor size, node status, TNM stage, degree of differentiation, age and sex. Conclusion: Overexpression of MRP gene is a marker of prognostic significance in patients with NSCLC. 展开更多
关键词 lung neoplasms multi-drug resistance MRP gene PROGNOSIS
下载PDF
EXPRESSION AND REVERSION OF DRUG RESISTANCE-AND APOPTOSIS-RELATED GENES OF A DDP-RESISTANT LUNG ADENOCARCINOMA CELL LINE 被引量:1
13
作者 王洁 张叙仪 蒋薇 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2000年第2期79-86,共8页
Objective: To investigate the co-expression of drug resistance- and apoptosis-related genes of cisplatin (CDDP)-selected lung adenocarcinoma cell line A 549 DDP for compared to the parental cell line A549, and reverse... Objective: To investigate the co-expression of drug resistance- and apoptosis-related genes of cisplatin (CDDP)-selected lung adenocarcinoma cell line A 549 DDP for compared to the parental cell line A549, and reverse of drug resistance by antisense s-oligodeoxynucleotides (S-ODNs) of differentially expressed genes. Methods: Sense and antisense S-ODN were transferred into A 549 DDP cells by lipofectin. The expression of drug resistance and apoptosis related genes was examined by RT-PCR, immunocytochemistry and flow cytometry, respectively. Apoptostic cells were identified by DNA electrophoresis and terminal deoxynucleotidyl transferase (TdT)-mediated biotin dUTP nick end-labeling(TUNEL). Drug resistance of tumor cells was detected by a cell viability (MTT) assay. Results: The expression of bcl-2 was positive and that of multidrug resistance-associated protein (MRP) at mRNA and protein level was increased in A 549 DDP compared to A549 cells. MDR1, c-myc and topoisomeras II (TOPO II) were similarly co-expressed in two cell lines. Both cell lines were negative for c-erbB-2 expression. In A 549 DDP cells, the expression of bcl-2 and MRP was significantly inhibited by their respective antisense S-ODNs. Antisense S-ODNs could also decrease significantly drug resistance of A 549 DDP cells to CDDP by promoting cell apoptosis. Conclusion: Both intrinsic and acquired drug resistance were involved in co-expression of multiple MDR-related genes in lung adenocarcinoma. Cooperation of bcl-2 and MRP genes appeared to play an important action to confer the resistance of A 549 DDP cells to CDDP. Their antisense S-ODNs are responsible for the decrease of drug resistance of this cell line by promoting apoptosis. 展开更多
关键词 Lung neoplasm A549 and A 549 DDP cell lines Apoptosis Antisense oligoxynucleotide drug resistance-gene
下载PDF
Multiple roles of mothers against decapentaplegic homolog 4 in tumorigenesis, stem cells, drug resistance, and cancer therapy
14
作者 Chuan-Jing Dai Yu-Ting Cao +1 位作者 Fang Huang Yi-Gang Wang 《World Journal of Stem Cells》 SCIE 2022年第1期41-53,共13页
The transforming growth factor(TGF)-βsignaling pathway controls many cellular processes,including proliferation,differentiation,and apoptosis.Abnormalities in the TGF-βsignaling pathway and its components are closel... The transforming growth factor(TGF)-βsignaling pathway controls many cellular processes,including proliferation,differentiation,and apoptosis.Abnormalities in the TGF-βsignaling pathway and its components are closely related to the occurrence of many human diseases,including cancer.Mothers against decapentaplegic homolog 4(Smad4),also known as deleted in pancreatic cancer locus 4,is a typical tumor suppressor candidate gene locating at q21.1 of human chromosome 18 and the common mediator of the TGF-β/Smad and bone morphogenetic protein/Smad signaling pathways.It is believed that Smad4 inactivation correlates with the development of tumors and stem cell fate decisions.Smad4 also interacts with cytokines,miRNAs,and other signaling pathways,jointly regulating cell behavior.However,the regulatory function of Smad4 in tumorigenesis,stem cells,and drug resistance is currently controversial.In addition,Smad4 represents an attractive therapeutic target for cancer.Elucidating the specific role of Smad4 is important for understanding the mechanism of tumorigenesis and cancer treatment.Here,we review the identification and characterization of Smad4,the canonical TGF-β/Smad pathway,as well as the multiple roles of Smad4 in tumorigenesis,stem cells,and drug resistance.Furthermore,we provide novel insights into the prospects of Smad4-targeted cancer therapy and the challenges that it will face in the future. 展开更多
关键词 Cancer therapy drug resistance Mothers against decapentaplegic homolog 4 STEMNESS Transforming growth factor-β TUMORIgeneSIS
下载PDF
Correlation of Kif2a and HPK1 expression in breast cancer with the oncogene and drug resistance gene expression
15
作者 Lei Wang Qing-Jie Meng +1 位作者 Jun Yuan Jun Yi 《Journal of Hainan Medical University》 2018年第19期55-58,共4页
Objective: To investigate the correlation of Kif2a and HPK1 expression in breast cancer with the oncogene and drug resistance gene expression. Methods: A total of 91 patients with breast cancer and 85 patients with br... Objective: To investigate the correlation of Kif2a and HPK1 expression in breast cancer with the oncogene and drug resistance gene expression. Methods: A total of 91 patients with breast cancer and 85 patients with breast adenoma who accepted surgical treatment in our hospital between August 2016 and February 2018 were selected, and the breast cancer tissues and breast adenoma tissues were collected respectively as the research samples. Fluorescence quantitative PCR method was used to detect the expression of Kif2a and HPK1 genes as well as oncogenes and drug resistance genes in sample tissues, and Pearson test was used to evaluate the inner link of Kif2a and HPK1 gene expression in breast cancer tissue with oncogene and drug resistance gene expression. Results: Kif2a mRNA expression in breast cancer tissues was higher than that in breast adenoma tissues whereas HPK1 mRNA expression was lower than that in breast adenoma tissues;oncogenes DEK, iASPP-SV, Stat3, MDM2 and Fra-1 mRNA expression were higher than those in breast adenoma tissues;drug resistance genes ESR1, MDR1, P-gp, MRP1 and GST- mRNA expression were higher than those in breast adenoma tissues whereas BCRP mRNA expression was lower than that in breast adenoma tissues. Correlation analysis showed that the Kif2a and HPK1 gene expression in breast cancer tissues were directly correlated with the expression of oncogenes and drug resistance genes. Conclusion: Kif2a gene is abnormally highly expressed whereas HPK1 gene is abnormally lowly expressed in breast cancer tissues, and they are involved in the regulation of oncogene and drug resistance gene expression. 展开更多
关键词 BREAST cancer Kif2a HPK1 ONCOgene drug resistance gene
下载PDF
Drug Resistance Mutations and Genetic Diversity in Patients Treated for HIV Type 1 Infection in Rural Care Centers in Togo
16
作者 Anoumou Dagnra Abla Konou +3 位作者 Mounerou Salou Pascal Kodah Damobé Kombate Prince David 《Open Journal of Medical Microbiology》 2016年第3期111-115,共6页
Introduction: Access to antiretroviral treatment (ART) in resource-limited countries has increased signif-icantly but scaling up ART into rural areas is more recent and information on treatment outcome in rural areas ... Introduction: Access to antiretroviral treatment (ART) in resource-limited countries has increased signif-icantly but scaling up ART into rural areas is more recent and information on treatment outcome in rural areas is still very limited. We reported here virological outcome and drug resistance in ART in rural settings in Togo. Methods: HIV-1 infected adults (≥18 years) and infants were enrolled in routine medical visit at 12 on first-line ART in three HIV care centers. Epidemiological and demographic information and data on ART history were collected. Viral load (VL) was determined and genotypic drug resistance testing was performed on all samples with viral load above 1000 copies/ml. Results: 102 adult patients and 27 infants were consecutively enrolled. Virological failure was observed in 28 (21.5%) patients. For 25/28 patients, sequencing was successful and drug resistance mutations were observed in 23 (92%) of them. The global prevalence of drug resistance in the study population was thus at least 17.8% (23/129), with 7 (6.9%) patients infected with HIV strains that are resistant to two of the three first-line antiretroviral (ARVs) drugs and 9 (8.3%) to all three first-line ARVs. As expected, the observed drug resistance mutations were mainly associated with the drugs used in first line regimens, zidovudine, lamivudine and effavirenz/nevirapine but several patients accumulated high numbers of mutations and developed also cross-resistance to abacavir, didanosine or the new non-nucleoside reverse transcriptase inhibitor drugs, like etravirine and rilpivirine. Conclusion: The observations on ART treatment outcome from ART clinics in rural areas are the same as observed in previous observations in Lomé, the capital city. Although access to viral load will improve treatment outcome, better programme management and implementation of actions to improve factors as patient adherence, drugs stock-outs and lost to follow-up are also essential. 展开更多
关键词 HIV-1 Antiretroviral Treatment drug resistance genetic Diversity RURAL TOGO
下载PDF
HIV Genetic Diversity, Virological Failure, and Drug Resistance in Libreville, Capital of Gabon, before a Total Dolutegravir-Based Regimen Transition
17
作者 Berthold Bivigou-Mboumba Berthe Amélie Iroungou +5 位作者 Pamela Moussavou-Boundzanga Laurette Guignali Mangouka Falone Larissa Akombi Aurore Bouassa-Bouassa Sandrine Francois-Souquière Jean Raymond Nzenze 《World Journal of AIDS》 2022年第3期156-168,共13页
Context: The Human Immunodeficiency Virus (HIV) continues to be the main public health challenge in Gabon. The latest studies highlight a high rate of virological failure and HIV drug resistance in semi-rural Gabon. I... Context: The Human Immunodeficiency Virus (HIV) continues to be the main public health challenge in Gabon. The latest studies highlight a high rate of virological failure and HIV drug resistance in semi-rural Gabon. In Libreville, virological failure data is sparse, data on HIV drug resistance for the former first line and new first-line regimen is lacking. Methods: Between January 28<sup>th</sup>, 2019, and January 31<sup>st</sup>, 2020, we received patient living with HIV (PLWHA) for CD4 counts, HIV-1 viral load, and/or genotyping of HIV-1 mutation drug resistance. We used the BD FACSPresto for CD4 count, the Biocentric Generic HIV viral load test for HIV-1 quantification, and the HIV-1 drug resistance mutation genotyping (ARNS protocol). Results: A total of 1129 HIV-1 patients have been enrolled for this study. The median age was 46 years old and the median of CD4 was 386 cells per cubic millimeter. The virological suppression success was observed at 62.7% of patients on the former first line regimen and 70.6% of the patient on DBR. We successfully amplified and analyzed 76 sequences and noticed the presence of the nineteen different subtypes with the predominance of the subtypes CRF02-AG (37.95%), followed by subtype A (22.3%). For HIV drug resistance analyses, 108 (65.1%) had resistance mutation to nucleoside reverse transcriptase inhibitors (NRTIs);of these, 91 (84%) present M184V/I. When looking for NNRTI mutations, 119 (71.7%) sequences had at least one mutation. Of these, 82 had K103N (68.9%), representing the main NNRTI mutations. The pattern showing the high level of resistance (HLR) in all molecules of NRTIs and NNRTIs, except for the TDF (intermediate resistance) was M41L-E44DL74I-M184-L210W-T215Y-K101P-K103N-V106I. Conclusion: This report paints a picture of a relatively female-dominated HIV-infected Gabonese population with a low level of immunity. The level of drug resistance with the former first-line regimen suggests the need to monitor the drug Dolutegravir resistance. 展开更多
关键词 HIV Infection HIV drug resistance HIV genetic Diversity Dolutegravir GABON
下载PDF
Role of autophagy in tumorigenesis,metastasis,targeted therapy and drug resistance of hepatocellular carcinoma 被引量:40
18
作者 Fang Huang Bing-Rong Wang Yi-Gang Wang 《World Journal of Gastroenterology》 SCIE CAS 2018年第41期4643-4651,共9页
Autophagy is a "self-degradative" process and is involved in the maintenance of cellular homeostasis and the control of cellular components by facilitating the clearance or turnover of long-lived or misfolde... Autophagy is a "self-degradative" process and is involved in the maintenance of cellular homeostasis and the control of cellular components by facilitating the clearance or turnover of long-lived or misfolded proteins, protein aggregates, and damaged organelles. Autophagy plays a dual role in cancer, including in tumor progression and tumor promotion, suggesting that autophagy acts as a double-edged sword in cancer cells. Liver cancer is one of the greatest leading causes of cancer death worldwide due to its high recurrence rate and poor prognosis. Especially in China, liver cancer has become one of the most common cancers due to the high infection rate of hepatitis virus. In primary liver cancer, hepatocellular carcinoma (HCC) is the most common type. Considering the perniciousness and complexity of HCC, it is essential to elucidate the function of autophagy in HCC. In this review, we summarize the physiological function of autophagy in cancer, analyze the role of autophagy in tumorigenesis and metastasis, discuss the therapeutic strategies targeting autophagy and the mechanisms of drug-resistance in HCC, and provide potential methods to circumvent resistance and combined anticancer strategies for HCC patients. 展开更多
关键词 AUTOPHAGY drug resistance HEPATOCELLULAR carcinoma TUMORIgeneSIS METASTASIS TARGETED therapy
下载PDF
Chromatin assembly factor 1 suppresses epigenetic reprogramming toward adaptive drug resistance
19
作者 Zhiquan Wang Rentian Wu +3 位作者 Qian Nie Kelly J.Bouchonville Robert B.Diasio Steven M.Offer 《Journal of the National Cancer Center》 2021年第1期15-22,共8页
The long-term effectiveness of targeted cancer therapies is limited by the development of resistance.Although epigenetic reprogramming has been implicated in resistance,the mechanisms remain elusive.Herein,we demonstr... The long-term effectiveness of targeted cancer therapies is limited by the development of resistance.Although epigenetic reprogramming has been implicated in resistance,the mechanisms remain elusive.Herein,we demonstrate that increased chromatin accessibility is involved in adaptive BRAF inhibitor(BRAFi)-resistance in melanoma cells.We observed loss of chromatin assembly factor 1(CAF-1)and its related histone H3 lysine 9 trimethylation(H3K9me3)with adaptive BRAFi resistance.We further showed that depletion of CAF-1 provides chromatin plasticity for effective reprogramming by AP1 components to promote BRAFi resistance.Our data sug-gest that therapeutic approaches to restore H3K9me3 levels may compensate for the loss of CAF-1 and,in turn,suppress resistance to BRAF inhibitors. 展开更多
关键词 Targeted therapy BRAF inhibitor Adaptive drug resistance Chromatin assembly factor 1 Nucleosome assembly H3K9me3 Epigenetic reprogramming
下载PDF
Drug resistance gene expression and chemotherapy sensitivity detection in Chinese women with different molecular subtypes of breast cancer 被引量:2
20
作者 Jing Zhao Hailian Zhang +5 位作者 Ting Lei Juntian Liu Shichao Zhang Nan Wu Bo Sun Meng Wang 《Cancer Biology & Medicine》 SCIE CAS CSCD 2020年第4期1014-1025,共12页
Objective:The aim of the study was to identify specific chemosensitivity drugs for various molecular subtypes of breast tumors in Chinese women,by detecting the expression of drug resistance genes and by using the dru... Objective:The aim of the study was to identify specific chemosensitivity drugs for various molecular subtypes of breast tumors in Chinese women,by detecting the expression of drug resistance genes and by using the drug sensitivity test on different molecular subtypes of breast cancers.Methods:The expression of drug resistance genes including Topo Ⅱ,GST-π,P-gp,LRP,and CD133 were detected with immunohistochemistry in a tissue microarray.Drug sensitivity tests included those for paclitaxel,epirubicin,carboplatin,vinorelbine,and fluorouracil and were conducted on primary cancer tissue cells and cell lines,including the T47 D,BT-474,and MDA-MB-231 cells and human breast cancer xenografts in nude mice.Results:The different drug resistant genes Topo Ⅱ,GST-π,P-gp,and LRP were differentially expressed among different molecular subtypes of breast cancers(P<0.05).Positive expression of CD133 was highest in basal-like breast cancer(P<0.05).Kaplan-Meier survival analysis showed that positive expressions of Topo Ⅱ and CD133 both correlated with shorter disease-free survival(DFS)(P<0.05)and overall survival(P<0.05),and positive expression of LRP correlated only with shorter DFS(P<0.05).BT-474 showed chemosensitivity to paclitaxel and epirubicin,while MDA-MB-231 showed chemosensitivities to paclitaxel,epirubicin,carboplatin,and fluorouracil(T/C≤50%).The basal-like and HER2+breast cancer primary cells showed chemosensitivities to paclitaxel and epirubicin with significant differences compared with luminal breast cancer primary cells(P<0.05).Conclusions:The differential expression of drug resistance genes and the differential chemosensitivities of drugs in different molecular subtype of breast cancers suggested that individual treatment should be given for each type of breast cancer. 展开更多
关键词 Breast cancer molecular subtype CD133 drug resistant gene CHEMOSENSITIVITY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部