非特异性固有免疫是预防病毒感染的第一道防线,Toll样受体(toll-like receptors,TLRs)和维甲酸诱导基因I样受体(RIG-I like receptors,RLRs)是感知病毒RNA的两个主要受体家族。RLRs为存在于胞浆中的RNA解旋酶家族,可识别在病毒感染或复...非特异性固有免疫是预防病毒感染的第一道防线,Toll样受体(toll-like receptors,TLRs)和维甲酸诱导基因I样受体(RIG-I like receptors,RLRs)是感知病毒RNA的两个主要受体家族。RLRs为存在于胞浆中的RNA解旋酶家族,可识别在病毒感染或复制期间进入到胞浆内的单链或双链RNA。目前研究RLRs家族比较多的成员有维甲酸诱导型基因I(retinoic acid-inducible gene I,RIG-I)、黑色素瘤分化相关基因5(melanoma differentiation associated gene-5,MDA-5)及遗传学和生理学实验室蛋白2(laboratory of genetics and physiology 2,LGP2)。本文分别就RLRs家族中RIG-I和MDA-5结构、生物学作用及其信号传导中关键分子的研究进展作一概述。展开更多
RIG-I (retinoid acid-inducible gene-I), a putative RNA helicase with a cytoplasmic caspase-recrultment domain (CARD), was identified as a pattem-recognition receptor (PRR) that mediates antiviral immunity by ind...RIG-I (retinoid acid-inducible gene-I), a putative RNA helicase with a cytoplasmic caspase-recrultment domain (CARD), was identified as a pattem-recognition receptor (PRR) that mediates antiviral immunity by inducing type I interferon production. To further study the biological function of RIG-I, we generated Rig-I^-/- mice through homologous recombination, taking a different strategy to the previously reported strategy. Our Rig-I^-/- mice are viable and fertile. Histological analysis shows that Rig-I^-/ mice develop a colitis-like phenotype and increased susceptibility to dextran sulfate sodium-induced colitis. Accordingly, the size and number of Peyer's patches dramatically decreased in mutant mice. The peripheral T-cell subsets in mutant mice are characterized by an increase in effector T cells and a decrease in naive T cells, indicating an important role for Rig-I in the regulation ofT-cell activation. It was further found that Rig-I deficiency leads to the downregulation of G protein αi2 subunit (Gαi2) in various tissues, including T and B lymphocytes. By contrast, upregulation of Rig-I in NB4 cells that are treated with ATRA is accompanied by elevated Gαi2 expression. Moreover, Gαi2 promoter activity is increased in co-transfected NIH3T3 cells in a Rig-I dose-dependent manner. All these findings suggest that Rig-I has crucial roles in the regulation of Gαi2 expression and T-cell activation. The development of colitis may be, at least in part, associated with downregulation of Gαi2 and disturbed T-cell homeostasis.展开更多
文摘非特异性固有免疫是预防病毒感染的第一道防线,Toll样受体(toll-like receptors,TLRs)和维甲酸诱导基因I样受体(RIG-I like receptors,RLRs)是感知病毒RNA的两个主要受体家族。RLRs为存在于胞浆中的RNA解旋酶家族,可识别在病毒感染或复制期间进入到胞浆内的单链或双链RNA。目前研究RLRs家族比较多的成员有维甲酸诱导型基因I(retinoic acid-inducible gene I,RIG-I)、黑色素瘤分化相关基因5(melanoma differentiation associated gene-5,MDA-5)及遗传学和生理学实验室蛋白2(laboratory of genetics and physiology 2,LGP2)。本文分别就RLRs家族中RIG-I和MDA-5结构、生物学作用及其信号传导中关键分子的研究进展作一概述。
文摘RIG-I (retinoid acid-inducible gene-I), a putative RNA helicase with a cytoplasmic caspase-recrultment domain (CARD), was identified as a pattem-recognition receptor (PRR) that mediates antiviral immunity by inducing type I interferon production. To further study the biological function of RIG-I, we generated Rig-I^-/- mice through homologous recombination, taking a different strategy to the previously reported strategy. Our Rig-I^-/- mice are viable and fertile. Histological analysis shows that Rig-I^-/ mice develop a colitis-like phenotype and increased susceptibility to dextran sulfate sodium-induced colitis. Accordingly, the size and number of Peyer's patches dramatically decreased in mutant mice. The peripheral T-cell subsets in mutant mice are characterized by an increase in effector T cells and a decrease in naive T cells, indicating an important role for Rig-I in the regulation ofT-cell activation. It was further found that Rig-I deficiency leads to the downregulation of G protein αi2 subunit (Gαi2) in various tissues, including T and B lymphocytes. By contrast, upregulation of Rig-I in NB4 cells that are treated with ATRA is accompanied by elevated Gαi2 expression. Moreover, Gαi2 promoter activity is increased in co-transfected NIH3T3 cells in a Rig-I dose-dependent manner. All these findings suggest that Rig-I has crucial roles in the regulation of Gαi2 expression and T-cell activation. The development of colitis may be, at least in part, associated with downregulation of Gαi2 and disturbed T-cell homeostasis.