期刊文献+
共找到349篇文章
< 1 2 18 >
每页显示 20 50 100
Intelligent Transformation: General Intelligence Theory
1
作者 Alexander Ngu Amaya Odilon Kosso 《International Journal of Intelligence Science》 2024年第3期59-70,共12页
This paper aims to formalize a general definition of intelligence beyond human intelligence. We accomplish this by re-imagining the concept of equality as a fundamental abstraction for relation. We discover that the c... This paper aims to formalize a general definition of intelligence beyond human intelligence. We accomplish this by re-imagining the concept of equality as a fundamental abstraction for relation. We discover that the concept of equality = limits the sensitivity of our mathematics to abstract relationships. We propose a new relation principle that does not rely on the concept of equality but is consistent with existing mathematical abstractions. In essence, this paper proposes a conceptual framework for general interaction and argues that this framework is also an abstraction that satisfies the definition of Intelligence. Hence, we define intelligence as a formalization of generality, represented by the abstraction ∆∞Ο, where each symbol represents the concepts infinitesimal, infinite, and finite respectively. In essence, this paper proposes a General Language Model (GLM), where the abstraction ∆∞Ο represents the foundational relationship of the model. This relation is colloquially termed “The theory of everything”. 展开更多
关键词 intelligence generalIZATION ABSTRACTION TRANSFORMATION general Language model general intelligence Theory Theory of Everything
下载PDF
The Role and Place of Artificial Neural Network Architectures Structural Redundancy in the Input Data Prototypes and Generalization Development
2
作者 Conrad Onésime Oboulhas Tsahat Ngoulou-A-Ndzeli Béranger Destin Ossibi 《Journal of Computer and Communications》 2024年第7期1-11,共11页
Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take ca... Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take care of something called the generalization of the neural network. The performance of Artificial Neural Networks (ANN) mostly depends upon its generalization capability. In this paper, we propose an innovative approach to enhance the generalization capability of artificial neural networks (ANN) using structural redundancy. A novel perspective on handling input data prototypes and their impact on the development of generalization, which could improve to ANN architectures accuracy and reliability is described. 展开更多
关键词 Multilayer Neural Network Multidimensional Nonlinear Interpolation generalization by Similarity artificial intelligence Prototype Development
下载PDF
Evolution and Prospects of Foundation Models: From Large Language Models to Large Multimodal Models
3
作者 Zheyi Chen Liuchang Xu +5 位作者 Hongting Zheng Luyao Chen Amr Tolba Liang Zhao Keping Yu Hailin Feng 《Computers, Materials & Continua》 SCIE EI 2024年第8期1753-1808,共56页
Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the ... Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the last two decades.Recently,transformer-based Pre-trained Language Models(PLM)have excelled in Natural Language Processing(NLP)tasks by leveraging large-scale training corpora.Increasing the scale of these models enhances performance significantly,introducing abilities like context learning that smaller models lack.The advancement in Large Language Models,exemplified by the development of ChatGPT,has made significant impacts both academically and industrially,capturing widespread societal interest.This survey provides an overview of the development and prospects from Large Language Models(LLM)to Large Multimodal Models(LMM).It first discusses the contributions and technological advancements of LLMs in the field of natural language processing,especially in text generation and language understanding.Then,it turns to the discussion of LMMs,which integrates various data modalities such as text,images,and sound,demonstrating advanced capabilities in understanding and generating cross-modal content,paving new pathways for the adaptability and flexibility of AI systems.Finally,the survey highlights the prospects of LMMs in terms of technological development and application potential,while also pointing out challenges in data integration,cross-modal understanding accuracy,providing a comprehensive perspective on the latest developments in this field. 展开更多
关键词 artificial intelligence large language models large multimodal models foundation models
下载PDF
Gated Neural Network-Based Unsteady Aerodynamic Modeling for Large Angles of Attack
4
作者 DENG Yongtao CHENG Shixin MI Baigang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期432-443,共12页
Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft ... Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft unsteady aerodynamic design and flight dynamics analysis.In this paper,aiming at the problems of poor generalization of traditional aerodynamic models and intelligent models,an intelligent aerodynamic modeling method based on gated neural units is proposed.The time memory characteristics of the gated neural unit is fully utilized,thus the nonlinear flow field characterization ability of the learning and training process is enhanced,and the generalization ability of the whole prediction model is improved.The prediction and verification of the model are carried out under the maneuvering flight condition of NACA0015 airfoil.The results show that the model has good adaptability.In the interpolation prediction,the maximum prediction error of the lift and drag coefficients and the moment coefficient does not exceed 10%,which can basically represent the variation characteristics of the entire flow field.In the construction of extrapolation models,the training model based on the strong nonlinear data has good accuracy for weak nonlinear prediction.Furthermore,the error is larger,even exceeding 20%,which indicates that the extrapolation and generalization capabilities need to be further optimized by integrating physical models.Compared with the conventional state space equation model,the proposed method can improve the extrapolation accuracy and efficiency by 78%and 60%,respectively,which demonstrates the applied potential of this method in aerodynamic modeling. 展开更多
关键词 large angle of attack unsteady aerodynamic modeling gated neural networks generalization ability
下载PDF
Evaluating the role of large language models in inflammatory bowel disease patient information
5
作者 Eun Jeong Gong Chang Seok Bang 《World Journal of Gastroenterology》 SCIE CAS 2024年第29期3538-3540,共3页
This letter evaluates the article by Gravina et al on ChatGPT’s potential in providing medical information for inflammatory bowel disease patients.While promising,it highlights the need for advanced techniques like r... This letter evaluates the article by Gravina et al on ChatGPT’s potential in providing medical information for inflammatory bowel disease patients.While promising,it highlights the need for advanced techniques like reasoning+action and retrieval-augmented generation to improve accuracy and reliability.Emphasizing that simple question and answer testing is insufficient,it calls for more nuanced evaluation methods to truly gauge large language models’capabilities in clinical applications. 展开更多
关键词 Crohn’s disease Ulcerative colitis Inflammatory bowel disease Chat generative pre-trained transformer large language model artificial intelligence
下载PDF
Comparative evaluation of artificial intelligence systems'accuracy in providing medical drug dosages:A methodological study
6
作者 Swaminathan Ramasubramanian Sangeetha Balaji +5 位作者 Tejashri Kannan Naveen Jeyaraman Shilpa Sharma Filippo Migliorini Suhasini Balasubramaniam Madhan Jeyaraman 《World Journal of Methodology》 2024年第4期121-130,共10页
BACKGROUND Medication errors,especially in dosage calculation,pose risks in healthcare.Artificial intelligence(AI)systems like ChatGPT and Google Bard may help reduce errors,but their accuracy in providing medication ... BACKGROUND Medication errors,especially in dosage calculation,pose risks in healthcare.Artificial intelligence(AI)systems like ChatGPT and Google Bard may help reduce errors,but their accuracy in providing medication information remains to be evaluated.AIM To evaluate the accuracy of AI systems(ChatGPT 3.5,ChatGPT 4,Google Bard)in providing drug dosage information per Harrison's Principles of Internal Medicine.METHODS A set of natural language queries mimicking real-world medical dosage inquiries was presented to the AI systems.Responses were analyzed using a 3-point Likert scale.The analysis,conducted with Python and its libraries,focused on basic statistics,overall system accuracy,and disease-specific and organ system accuracies.RESULTS ChatGPT 4 outperformed the other systems,showing the highest rate of correct responses(83.77%)and the best overall weighted accuracy(0.6775).Disease-specific accuracy varied notably across systems,with some diseases being accurately recognized,while others demonstrated significant discrepancies.Organ system accuracy also showed variable results,underscoring system-specific strengths and weaknesses.CONCLUSION ChatGPT 4 demonstrates superior reliability in medical dosage information,yet variations across diseases emphasize the need for ongoing improvements.These results highlight AI's potential in aiding healthcare professionals,urging continuous development for dependable accuracy in critical medical situations. 展开更多
关键词 Dosage calculation artificial intelligence ChatGPT Drug dosage Healthcare large language models
下载PDF
Homo Faber Scapegoated, or Apocalyptic Artificial Intelligence: Rethinking the Technological Singularity Concept From the Synergetic Historicism Position
7
作者 Irina Gennadievna Mikailova 《Journal of Philosophy Study》 2023年第11期496-506,共11页
The article is focused on discussing a new methodological approach to the study on specifics of transferring human beings to the posthuman cyber society.The approach in question assists in rethinking interconnected pr... The article is focused on discussing a new methodological approach to the study on specifics of transferring human beings to the posthuman cyber society.The approach in question assists in rethinking interconnected problems both of human origins in the universe and mankind’s digital future.And,besides,such an approach allows to deal with self-organising interconversions between the poles of the cardinal dual opposition of the Global Noosphere Brain and the Artificial General Intelligence.Herewith such phenomena of digital social life as Global Digitalisation,Digital Immortality,Mindcloning,and Technological Zombification being the constituents of Technological Singularity Concept,are rethought as paving the way for oncoming Posthuman Digital Era.This concept is evidently exemplified by a bifurcation resulting in two alternatives to be chosen by human beings,to wit,either to be undergone Mindcloning and become digitally immortal or being destroyed by powerful intelligent machines.The investigation in question is based on such a progressive methodology as the Law of Self-Organizing Ideals,as well as on the Method of Dual Oppositions.Rethinking interrelationships between the problem of a sense of social history and the meaning-of-life of local societies members which any intelligent machine is devoid of permits to substantiate specific regularities of Self-Transforming Homo Faber into Homo Digitalis and Technological Zombies ready to be transferred to posthuman cyberspace. 展开更多
关键词 Law of Self-Organising Ideals dual oppositions Homo Faber Homo Digitalis Technological Singularity artificial general intelligence cyber society cyberspace Mindcloning mindware mindfiles Synergetic Historicism
下载PDF
Stochastic PDEs for large portfolios with general mean-reverting volatility processes
8
作者 Ben Hambly Nikolaos Kolliopoulos 《Probability, Uncertainty and Quantitative Risk》 2024年第3期263-300,共38页
We consider a structural stochastic volatility model for the loss from a large portfolio of credit risky assets.Both the asset value and the volatility processes are correlated through systemic Brownian motions,with d... We consider a structural stochastic volatility model for the loss from a large portfolio of credit risky assets.Both the asset value and the volatility processes are correlated through systemic Brownian motions,with default determined by the asset value reaching a lower boundary.We prove that if our volatility models are picked from a class of mean-reverting diffusions,the system converges as the portfolio becomes large and,when the vol-of-vol function satisfies certain regularity and boundedness conditions,the limit of the empirical measure process has a density given in terms of a solution to a stochastic initial-boundary value problem on a half-space.The problem is defined in a special weighted Sobolev space.Regularity results are established for solutions to this problem,and then we show that there exists a unique solution.In contrast to the CIR volatility setting covered by the existing literature,our results hold even when the systemic Brownian motions are taken to be correlated. 展开更多
关键词 Stochastic PDEs large portfolios general mean-reverting volatility processes Stochastic volatility model Credit risk
原文传递
An AI Embedded Object-Oriented Approach for Formulating Computable General Equilibrium
9
作者 Li Tong (Department of Automatic Control Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China) Chen Shuheng (Department of Economics, National Chengchi University, Taipei, 11623) Feng Shan (Department of Automatic Control 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期14-21,共8页
This paper proposes and illustrates an AI embedded object-oriented methodology to formulate the computable general equilibrium (CGE) models. In this framework, a CGE model is viewed as a collection of objects embedd... This paper proposes and illustrates an AI embedded object-oriented methodology to formulate the computable general equilibrium (CGE) models. In this framework, a CGE model is viewed as a collection of objects embedded AI or namely agents in computer world, corresponding to economic agents and entities in real world, such as government, households, markets and so on. A frame representation of major objects in CGE model is used for trade and environment. Embedded Al object-oriented approach (or software agent) is used in the CGE model representation can able to narrow the gap among the semantic representation, formal CGE (mathematical) representation and computer and algorithm representation, and to improve CGE in understanding and maintenance etc. In such a system, constructing a CGE model to appear an intuitive process rather than an abstract process. This intuitive process needs more understanding of the substance of economics and the logic underlying the problem rather than mathematical notation. 展开更多
关键词 Computable general equilibrium artificial intelligence Object-oriented method Agents.
下载PDF
发展新质生产力 推动我国经济高质量发展 被引量:26
10
作者 纪玉山 代栓平 +8 位作者 杨秉瑜 程娜 王璐 黄晓野 汪苗苗 苏美文 张成甦 王云凤 刘美平 《工业技术经济》 北大核心 2024年第2期3-28,共26页
中华人民共和国(新中国)成立以来,从毛泽东的《论十大关系》,到邓小平的“科学技术是第一生产力”,再到习近平的“整合科技创新资源,引领发展战略性新兴产业和未来产业,加快形成新质生产力”,我党对经济工作规律性的认识,随着时代的发... 中华人民共和国(新中国)成立以来,从毛泽东的《论十大关系》,到邓小平的“科学技术是第一生产力”,再到习近平的“整合科技创新资源,引领发展战略性新兴产业和未来产业,加快形成新质生产力”,我党对经济工作规律性的认识,随着时代的发展而不断深化。习近平总书记在2024年1月31日召开的中央政治局第十一次集体学习会议上的重要讲话,更是把这种认识推向了全新的高度。总书记在主持学习时明确指出“必须牢记高质量发展是新时代的硬道理”,“高质量发展需要新的生产力理论来指导,而新质生产力已经在实践中形成并展示出对高质量发展的强劲推动力、支撑力,需要我们从理论上进行总结、概括,用以指导新的发展实践”,并强调“科技创新能够催生新产业、新模式、新动能,是发展新质生产力的核心要素”。为了深入学习贯彻总书记讲话精神,围绕“发展新质生产力推动我国经济高质量发展”这个新时代经济发展的核心课题,本刊邀请国内著名专家、学者,撰写一组笔谈文章,以飨读者。 展开更多
关键词 新质生产力 AI大模型 数据要素 生成式AI 人工智能产业 现代化产业体系 东北振兴
下载PDF
生成式人工智能大模型在设计领域的应用 被引量:2
11
作者 孙守迁 曹磊磊 +4 位作者 王松 刘杰汉 于卓玉 殷敏 柴春雷 《家具与室内装饰》 北大核心 2024年第4期1-8,I0005,共9页
近些年来,随着ChatGPT,Midjourney,Stable Diffusion,Gemini等大模型的横空出世,生成式人工智能大模型取得了飞速发展,各行各业迎来了新一轮的技术变革。旨在探讨这一前沿技术在设计领域的应用,特别是在设计创新和创意产出方面的影响。... 近些年来,随着ChatGPT,Midjourney,Stable Diffusion,Gemini等大模型的横空出世,生成式人工智能大模型取得了飞速发展,各行各业迎来了新一轮的技术变革。旨在探讨这一前沿技术在设计领域的应用,特别是在设计创新和创意产出方面的影响。首先,我们介绍了生成式人工智能大模型的基本原理,着重阐述其在文本生成、图像生成等任务上的成功应用。其次,我们深入研究了生成式人工智能大模型在设计领域的具体应用,主要包括服装设计、平面设计、漫画设计、机器人设计、工艺品设计、游戏设计等方面。此外,还探讨了生成式人工智能大模型在设计领域可能面临的挑战以及相应的解决策略。最后,我们强调了在设计领域使用生成式人工智能大模型的潜在益处,以及在设计过程中应扮演的角色。 展开更多
关键词 生成式人工智能 大模型 文本生成 图像生成 设计 创新
下载PDF
是“神马”还是“灰犀牛”:ChatGPT等大语言模型对教育的多维影响及应对之策 被引量:12
12
作者 陆道坤 李淑婷 《新疆师范大学学报(哲学社会科学版)》 北大核心 2024年第2期106-124,共19页
ChatGPT以“入侵”的方式在教育领域登陆,初露“灰犀牛”面貌,由此引发教育思想、教育体系和学校教育层面的危机。在教育思想层面,多将ChatGPT视为“神马”,在态度上选择抵制和观望,其背后既有思维惯性、惰性等历史原因,也有因ChatGPT... ChatGPT以“入侵”的方式在教育领域登陆,初露“灰犀牛”面貌,由此引发教育思想、教育体系和学校教育层面的危机。在教育思想层面,多将ChatGPT视为“神马”,在态度上选择抵制和观望,其背后既有思维惯性、惰性等历史原因,也有因ChatGPT等大语言模型管理制度缺位导致安全感无处寄放的现实依据。就教育体系而言,ChatGPT引发的教育自洽与替代焦虑加持,将从内外两个角度解构既有的教育目标体系,由此带来基于人的自由全面发展的教育目标体系的重构;ChatGPT将推动知识生产与知识学习的转向,进而以知识教育价值重估为“支点”,撬动教育整体价值重估,促使教育立足“人本”和“高阶”开展价值创造;ChatGPT还将引发学生发展与评价标准、方式的变革,渐次推动教育评价体系的全面创新。就学校教育而言,知识学习的变革必将推动学校教育时空的重组和学校生态的创新,使课堂教学由“三维”向“四维”转型,进而推动教学生态重塑、流程再造和课堂教学革命,引发教师角色、工作方式和发展方式的变革。 展开更多
关键词 灰犀牛 ChatGPT 人工智能 大语言模型 教育 入侵 影响 应对
下载PDF
基于“技术道德化”理论的生成式人工智能教育应用潜能与风险研究 被引量:2
13
作者 童慧 杨彦军 《电化教育研究》 北大核心 2024年第7期12-18,共7页
随着生成式人工智能的快速发展及其在教育领域的广泛应用,国内外研究者围绕它及其背后的大语言模型教育应用问题展开了热烈的讨论,但大部分研究因缺乏对生成式人工智能技术原理的了解而在问题探讨中存在伊莉莎效应。研究首先在对生成式... 随着生成式人工智能的快速发展及其在教育领域的广泛应用,国内外研究者围绕它及其背后的大语言模型教育应用问题展开了热烈的讨论,但大部分研究因缺乏对生成式人工智能技术原理的了解而在问题探讨中存在伊莉莎效应。研究首先在对生成式人工智能技术学原理进行深入剖析的基础上,从维贝克“人—技杂合”视角对生成式人工智能的本质展开技术哲学分析;其次,基于“技术道德化”理论分析了生成式人工智能教育应用的四大潜能和面临的五大风险挑战;最后,提出基于“人—技杂合”的思想从“设计者”和“使用者”两种视角构建“双向奔赴”的全球人工智能治理体系,将成为未来探索的重要方向。 展开更多
关键词 生成式人工智能 技术道德化 大模型 人—技杂合 应用风险
下载PDF
面向环境司法智能审判场景的人工智能大模型应用探讨 被引量:1
14
作者 陈晓红 陈姣龙 +1 位作者 胡东滨 梁伟 《中国工程科学》 CSCD 北大核心 2024年第1期190-201,共12页
环境司法审判是生态环境治理体系的重要组成部分,基于生成式人工智能(AI)技术的突破而形成的AI大模型为环境司法审判工作转向更高水平的智能审判体系提供了重大机遇。本文围绕推进AI大模型技术与环境司法审判工作融合、实现环境司法审... 环境司法审判是生态环境治理体系的重要组成部分,基于生成式人工智能(AI)技术的突破而形成的AI大模型为环境司法审判工作转向更高水平的智能审判体系提供了重大机遇。本文围绕推进AI大模型技术与环境司法审判工作融合、实现环境司法审判工作创新发展的主旨,探讨了AI大模型在环境司法智能审判中的赋能作用和应用实践,凝炼了当前环境司法AI大模型存在的数据质量“低劣”“算法黑箱”引发偏见、深度应用能力不足等突出问题;以生态环境保护类案件应用为例,构建了基于AI大模型的环境司法智能审判系统,阐述了相应系统的架构设计以及涉及的技术要素。进一步提出了注重顶层设计、建设环境司法高端智库,建设环境司法数据中台、健全司法数据标准及规范体系,构建算法治理机制、促进环境司法审判公平正义,完善环境司法多元问责机制、筑牢司法监督管理体系等发展建议,以期丰富环境司法审判工作的前沿技术认知,加快环境司法的智能化、智慧化、现代化转型进程。 展开更多
关键词 环境司法 智能审判体系 AI大模型 生成式人工智能
下载PDF
论人工智能体的模块化治理 被引量:1
15
作者 张欣 《东方法学》 北大核心 2024年第3期129-142,共14页
人工智能体由控制端、感知端和行动端组成。在控制端,尽管大模型充当了智能体的“智能引擎”,但仍存在“机器幻觉”,其生成的内容面临时效性和可靠性风险。大模型的算法偏见也可能加剧智能体在决策中的偏见。在感知端,智能体的多模态感... 人工智能体由控制端、感知端和行动端组成。在控制端,尽管大模型充当了智能体的“智能引擎”,但仍存在“机器幻觉”,其生成的内容面临时效性和可靠性风险。大模型的算法偏见也可能加剧智能体在决策中的偏见。在感知端,智能体的多模态感知能力加大了个人隐私侵权的风险,对个人信息保护制度构成挑战。多智能体系统间的交互可能导致不可预测的、复杂的和动态的系统性安全风险。在行动端,具身智能体的交互式学习模式可能导致全面的、侵入性的隐私风险。智能体的嵌入式和中介化部署方式将深度影响人类的主体性。其高度定制化的部署特性还会面临人工智能对齐的挑战。面向“代理即服务”的产业链特点,应建立从基础模型到基础代理的模块化治理框架。针对具体的高风险场景,应探索精准化治理机制。鉴于人工智能体的生态特性,应着力推进交互式治理。 展开更多
关键词 人工智能体 通用人工智能 人工智能治理 模块化治理 大模型 精准化治理
下载PDF
教育通用人工智能大模型标准体系框架研制 被引量:1
16
作者 吴永和 颜欢 马晓玲 《现代教育技术》 2024年第4期28-36,共9页
当前,人工智能大模型在各领域迅猛发展,其中教育领域的人工智能大模型虽然能够在知识生产、知识计算和知识服务方面完成多种智能任务以提供教学辅助,但其在功能构建、数据收集与管理、教学测评和应用等方面仍存在局限,同时缺乏适用于多... 当前,人工智能大模型在各领域迅猛发展,其中教育领域的人工智能大模型虽然能够在知识生产、知识计算和知识服务方面完成多种智能任务以提供教学辅助,但其在功能构建、数据收集与管理、教学测评和应用等方面仍存在局限,同时缺乏适用于多个教育场景的通用人工智能大模型。基于此,文章从人工智能的发展和标准化的现状出发,对教育通用人工智能大模型的概念、原则和属性做出界定,并提出教育通用人工智能大模型标准体系,包括总体框架、信息模型、数据规范、测评规范和教学应用要求等,以从指导角度对教育通用人工智能大模型的研发、应用、管理和评估进行规范。文章通过研究,旨在规范通用人工智能大模型在教育领域的应用与发展,赋能、赋智于教育,推动教育的高质量发展。 展开更多
关键词 人工智能 通用人工智能大模型 教育通用人工智能大模型 标准 标准体系
下载PDF
基于大模型的知识生产与启蒙辩证法 被引量:3
17
作者 高奇琦 《江苏社会科学》 北大核心 2024年第1期46-56,I0002,I0003,共13页
人们在使用大模型的过程中,会存在某种程度的幻觉,即认为大模型无所不知和无所不能。正因为这种幻觉的存在,大模型可能会从启蒙的理性变成新的启蒙神话。启蒙的意义在于保持一种开放性,而启蒙的神话就表明了这种开放性的消失。大模型的... 人们在使用大模型的过程中,会存在某种程度的幻觉,即认为大模型无所不知和无所不能。正因为这种幻觉的存在,大模型可能会从启蒙的理性变成新的启蒙神话。启蒙的意义在于保持一种开放性,而启蒙的神话就表明了这种开放性的消失。大模型的发展无疑会加剧世界的数学化。在此背景之下,权证就构成了未来数字世界的基本通货。过度的数学化也酝酿了新的工具理性危险。作为新的技术,大模型全面展示了知识与权力的关系。大模型拥有巨大的整合力,正在实现新型的知识大一统。这种弥散化的超能力会进入知识生产的各个领域,没有个体可以逃脱这种超能力的捕捉。大模型会进一步加剧知识工业化,这将导致更为严重的意识形态问题。一方面,大模型本身有其意识形态。另一方面,大模型更加深刻的意识形态会隐含在其免费模式和消费模式之中,同时想象的知识共同体最终又会服务于知识霸权。面对知识工业化的风险,应该建立知识生产的“手工绿洲”,用荒谬、隐喻和修辞来对抗理性,让人类保有通过具身体验来创造知识的能力,并且要避免同一性和绝对正确的神话。 展开更多
关键词 大模型 人工智能 ChatGPT 启蒙辩证法 工具理性
下载PDF
卫生领域人工智能的伦理与治理:多模态大模型指南 被引量:1
18
作者 王玥(译) 宋雅鑫(译) +2 位作者 王艺霏(译) 于莲(审校) 王晶(审校) 《中国医学伦理学》 北大核心 2024年第9期1001-1022,共22页
2024年,世界卫生组织发布了“Ethics and governance of artificial intelligence for health.Guidance on large multi-modal models”,将其翻译成中文《卫生领域人工智能的伦理与治理:多模态大模型指南》供中国的同仁参阅,协助规划与... 2024年,世界卫生组织发布了“Ethics and governance of artificial intelligence for health.Guidance on large multi-modal models”,将其翻译成中文《卫生领域人工智能的伦理与治理:多模态大模型指南》供中国的同仁参阅,协助规划与卫生领域多模态大模型有关的益处和挑战,并为适当开发、提供和使用多模态大模型提供政策和实践方面的指导。世界卫生组织咨询了20位人工智能领域的顶尖专家,他们确定了在卫生领域使用人工智能的潜在益处和潜在风险,并发布了以协商方式达成一致的六项原则,供正在使用人工智能的政府、开发者和提供者在制定政策和实践时考虑。指南提供了与指导原则相一致的企业内部、政府和国际合作的治理建议,指南的基础是考虑到人类使用卫生领域生成式人工智能独特方式的指导原则和治理建议。生成式人工智能是算法在可用于生成新内容的数据集上进行训练的一种人工智能技术。指南针对其中一种类型的生成式人工智能,即多模态大模型,这种模型可以接受一种或多种类型的数据输入,并产生不局限于输入算法的数据类型的多种输出。据预测,多模态大模型将广泛应用于医疗保健、科学研究、公共卫生和药物开发等领域。多模态大模型也被称为“通用基础模型”,尽管尚未证实多模态大模型能否完成各种任务和目的。 展开更多
关键词 卫生领域人工智能 多模态大模型 通用基础模型 伦理与治理
下载PDF
基于大模型的态势认知智能体 被引量:1
19
作者 孙怡峰 廖树范 +1 位作者 吴疆 李福林 《指挥控制与仿真》 2024年第2期1-7,共7页
针对战场态势信息众多、变化趋势认知困难的问题,提出基于大模型的态势认知智能体框架和智能态势认知推演方法。从认知概念出发,结合智能体的抽象性、具身性特点,明确了智能体构建的3个关键环节:学习环境、记忆方式和产生知识机制;设计... 针对战场态势信息众多、变化趋势认知困难的问题,提出基于大模型的态势认知智能体框架和智能态势认知推演方法。从认知概念出发,结合智能体的抽象性、具身性特点,明确了智能体构建的3个关键环节:学习环境、记忆方式和产生知识机制;设计了战场态势认知智能体架构,包括记忆部件、规划部件、执行部件、评估部件以及智能体训练要点。在长期记忆部件中,围绕战场复杂状态建模特点,分析大语言模型、多模态大模型、大序列模型的运用问题。 展开更多
关键词 大模型 态势认知 智能体 通用人工智能
下载PDF
基于人工智能LLM技术的虚拟患者系统构建与临床教学应用 被引量:2
20
作者 周志浩 宋佳琳 +2 位作者 刘嘉成 周心悦 胡汉昆 《医学新知》 CAS 2024年第7期833-842,共10页
目的构建一种基于人工智能大语言模型(large language model,LLM)技术、可用于医学教育的新型虚拟患者(virtual patient,VP)系统,评价该系统在基层医生进修学习全科医学临床思维中的应用效果。方法选取2021年1月至2024年2月在东南大学... 目的构建一种基于人工智能大语言模型(large language model,LLM)技术、可用于医学教育的新型虚拟患者(virtual patient,VP)系统,评价该系统在基层医生进修学习全科医学临床思维中的应用效果。方法选取2021年1月至2024年2月在东南大学附属中大医院进修的基层社区医生为研究对象,随机分为试验组和对照组,分别采用基于LLM的VP系统教学、传统教学方法进行授课,通过临床思维理论知识考核、临床思维能力考核、课程满意度调查评估教学效果,并对结果进行相应的统计学分析。结果共纳入124名基层社区医生,其中试验组60例、对照组64例,两组在一般基线资料上差异无统计学意义,具有可比性。课程结束后,试验组临床思维理论知识考核成绩显著高于对照组(83.83±3.15 vs.79.92±4.52,P<0.01),且不及格率显著低于对照组(0.00%vs.9.38%,P<0.05);试验组在临床思维能力3个维度(批判性、系统性、循证思维)方面教学后分数均显著高于教学前,而对照组仅在批判性思维维度上教学前后差异有统计学意义;教学后试验组在系统思维、循证思维方面分数均显著高于对照组(P<0.05),但在批判性思维上两组分数差异无统计学意义。试验组对授课的总体满意度也显著高于对照组(93.33%vs.85.48%,P<0.05)。结论基于LLM的VP系统提升了学员对临床思维理论知识的掌握程度,也促进了其临床思维能力的培养,该教学方法可为其他医学教育群体提供新的教学工具和思路。 展开更多
关键词 人工智能 大语言模型 虚拟患者 医学教育 临床思维
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部