Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivati...Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivations, quasiderivations, and product zero derivations of P coincide, and any generalized derivation of P is a sum of an inner derivation, a central quasiderivation, and a scalar multiplication map of P. We also show that any commuting automorphism of P is a central automorphism, and any commuting derivation of P is a central derivation.展开更多
Let Mn be the algebra of all n × n complex matrices and gl(n, C) be the general linear Lie algebra, where n ≥ 2. An invertible linear map φ : gl(n, C) → gl(n, C) preserves solvability in both directions...Let Mn be the algebra of all n × n complex matrices and gl(n, C) be the general linear Lie algebra, where n ≥ 2. An invertible linear map φ : gl(n, C) → gl(n, C) preserves solvability in both directions if both φ and φ-1 map every solvable Lie subalgebra of gl(n, C) to some solvable Lie subalgebra. In this paper we classify the invertible linear maps preserving solvability on gl(n, C) in both directions. As a sequence, such maps coincide with the invertible linear maps preserving commutativity on Mn in both directions.展开更多
Let gl,,(R) be the general linear Lie algebra of all n×n matrices over a unital commutative ring R with 2 invertible, dn(R) be the Cartan subalgebra of gln(R) of all diagonal matrices. The maximal subalgebr...Let gl,,(R) be the general linear Lie algebra of all n×n matrices over a unital commutative ring R with 2 invertible, dn(R) be the Cartan subalgebra of gln(R) of all diagonal matrices. The maximal subalgebras of gln(R) that contain dn(F:) are classified completely.展开更多
Let g be the general linear Lie algebra consisting of all n x n matrices over a field F and with the usual bracket operation {x, y} =xy - yx. An invertible map φ : g →g is said to preserve staircase subalgebras if ...Let g be the general linear Lie algebra consisting of all n x n matrices over a field F and with the usual bracket operation {x, y} =xy - yx. An invertible map φ : g →g is said to preserve staircase subalgebras if it maps every staircase subalgebra to some staircase subalgebra of the same dimension. In this paper, we devote to giving an explicit description on the invertible maps on g that preserve staircase subalgebras.展开更多
基金supported by the National Natural Science Foundation of China(11101084,11071040)the Fujian Province Nature Science Foundation of China(2013J01005)
文摘Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivations, quasiderivations, and product zero derivations of P coincide, and any generalized derivation of P is a sum of an inner derivation, a central quasiderivation, and a scalar multiplication map of P. We also show that any commuting automorphism of P is a central automorphism, and any commuting derivation of P is a central derivation.
基金The NSF (2009J05005) of Fujian Provincea Key Project of Fujian Provincial Universities-Information Technology Research Based on Mathematics
文摘Let Mn be the algebra of all n × n complex matrices and gl(n, C) be the general linear Lie algebra, where n ≥ 2. An invertible linear map φ : gl(n, C) → gl(n, C) preserves solvability in both directions if both φ and φ-1 map every solvable Lie subalgebra of gl(n, C) to some solvable Lie subalgebra. In this paper we classify the invertible linear maps preserving solvability on gl(n, C) in both directions. As a sequence, such maps coincide with the invertible linear maps preserving commutativity on Mn in both directions.
基金supported by National Natural Science Foundation of China (Grant No.11171343)the Fundamental Research Funds for the Central Universities (Grant No. 2010LKSX05)
文摘Let gl,,(R) be the general linear Lie algebra of all n×n matrices over a unital commutative ring R with 2 invertible, dn(R) be the Cartan subalgebra of gln(R) of all diagonal matrices. The maximal subalgebras of gln(R) that contain dn(F:) are classified completely.
基金The NSF (11126121) of ChinaPh.D.Fund (B2010-93) of Henan Polytechnic University+1 种基金Natural Science Research Program (112300410120) of Science and Technology Department of Henan ProvinceNatural Science Research Program (2011B110016) of Education Department of Henan Province
文摘Let g be the general linear Lie algebra consisting of all n x n matrices over a field F and with the usual bracket operation {x, y} =xy - yx. An invertible map φ : g →g is said to preserve staircase subalgebras if it maps every staircase subalgebra to some staircase subalgebra of the same dimension. In this paper, we devote to giving an explicit description on the invertible maps on g that preserve staircase subalgebras.