This paper proposes an efficient framework to utilize quantum search practically.To the best of our knowledge,this is the first paper to show a concrete usage of quantum search in general programming.In our framework,...This paper proposes an efficient framework to utilize quantum search practically.To the best of our knowledge,this is the first paper to show a concrete usage of quantum search in general programming.In our framework,we can utilize a quantum computer as a coprocessor to speed-up some parts of a program that runs on a classical computer.To do so,we propose several new ideas and techniques,such as a practical method to design a large quantum circuits for search problems and an efficient quantum comparator.展开更多
Using a modified R-matrix code, the fine-structure-resolved partial photoionization cross sections of excited Na (Z = 11) are calculated within the Breit-Pauli approximation. Our calculated energy levels of Na+ and...Using a modified R-matrix code, the fine-structure-resolved partial photoionization cross sections of excited Na (Z = 11) are calculated within the Breit-Pauli approximation. Our calculated energy levels of Na+ and Na are in good agreement with the experimental values within 1% and the branching ratios of the J-resolved partial cross sections are consistent with the recent measurements within the experimental uncertainties. The agreements are impossible to be obtained without adequately taking into account the relativistic effects and the electron correlations together. Therefore, even for the intermediate-Z elements (e.g. Na with Z = 11), the relativistic effects (mainly the spin-orbit interactions) should not be neglected.展开更多
In this paper a canonical neural network with adaptively changing synaptic weights and activation function parameters is presented to solve general nonlinear programming problems. The basic part of the model is a sub-...In this paper a canonical neural network with adaptively changing synaptic weights and activation function parameters is presented to solve general nonlinear programming problems. The basic part of the model is a sub-network used to find a solution of quadratic programming problems with simple upper and lower bounds. By sequentially activating the sub-network under the control of an external computer or a special analog or digital processor that adjusts the weights and parameters, one then solves general nonlinear programming problems. Convergence proof and numerical results are given.展开更多
The relationship between TMS and general logic programs is an important issue in non-monotonic logic programming. In this paper, we prove that, after we translate the TMS theory into a general logic program, the TMS...The relationship between TMS and general logic programs is an important issue in non-monotonic logic programming. In this paper, we prove that, after we translate the TMS theory into a general logic program, the TMS's well-founded assignment (orextension) is equivalent to the corresponding general logic program's stable model. It means that TMS can be completely integrated into a non-monotonic logic programming environment.展开更多
文摘This paper proposes an efficient framework to utilize quantum search practically.To the best of our knowledge,this is the first paper to show a concrete usage of quantum search in general programming.In our framework,we can utilize a quantum computer as a coprocessor to speed-up some parts of a program that runs on a classical computer.To do so,we propose several new ideas and techniques,such as a practical method to design a large quantum circuits for search problems and an efficient quantum comparator.
基金Supported by This work is supported by the Ministry of Science and Technology and Ministry of Education of China, the Key Project of the Ministry of Education of China (N0 306020), the National Natural Science Foundation of China, the National High- Tech ICF Committee in China and the Yin-He Super-computer Center, Institute of Applied Physics and Mathematics, Beijing, China, and the National Basic Research Programme of China under Grant No 2006CB921408.
文摘Using a modified R-matrix code, the fine-structure-resolved partial photoionization cross sections of excited Na (Z = 11) are calculated within the Breit-Pauli approximation. Our calculated energy levels of Na+ and Na are in good agreement with the experimental values within 1% and the branching ratios of the J-resolved partial cross sections are consistent with the recent measurements within the experimental uncertainties. The agreements are impossible to be obtained without adequately taking into account the relativistic effects and the electron correlations together. Therefore, even for the intermediate-Z elements (e.g. Na with Z = 11), the relativistic effects (mainly the spin-orbit interactions) should not be neglected.
基金the the Innovation Fund of the Academy of Mathematics and System Sciencesby the Management,Decision and Information System Lab.,Chinese Academy of Sciences.
文摘In this paper a canonical neural network with adaptively changing synaptic weights and activation function parameters is presented to solve general nonlinear programming problems. The basic part of the model is a sub-network used to find a solution of quadratic programming problems with simple upper and lower bounds. By sequentially activating the sub-network under the control of an external computer or a special analog or digital processor that adjusts the weights and parameters, one then solves general nonlinear programming problems. Convergence proof and numerical results are given.
文摘The relationship between TMS and general logic programs is an important issue in non-monotonic logic programming. In this paper, we prove that, after we translate the TMS theory into a general logic program, the TMS's well-founded assignment (orextension) is equivalent to the corresponding general logic program's stable model. It means that TMS can be completely integrated into a non-monotonic logic programming environment.