The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.I...The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.In this paper,we introduce a Lie group that the Heisenberg group can be imbedded into and call it generalized complex Heisenberg.We investigate quaternionic analysis on the generalized complex Heisenberg.We also give the Penrose integral formula for k-CF functions and construct the tangential k-Cauchy-Fueter complex.展开更多
In this paper, a new notion of a generalized H-η-accretive operator is introduced and studied, which provides a unifying framework for the generalized m-accretive operator and the H-η-monotone operator in Banach spa...In this paper, a new notion of a generalized H-η-accretive operator is introduced and studied, which provides a unifying framework for the generalized m-accretive operator and the H-η-monotone operator in Banach spaces. A resolvent operator associated with the generalized H-η-accretive operator is defined, and its Lipschitz continuity is shown. As an application, the solvability for a class of variational inclusions involving the generalized H-η-accretive operators in Banach spaces is considered. By using the technique of the resolvent mapping, an iterative algorithm for solving the variational inclusion in Banach spaces is constructed. Under some suitable conditions, it is proven that the solution for the variational inclusion and the convergence of the iterative sequence generated by the algorithm exist.展开更多
In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger equation in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously r...In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger equation in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously respect to the initial data in P’. Introducing a family of weakly continuous operators, we prove that this family is a semigroup of operators in P’. Then, with this family of operators, we get a fine version of the existence and dependency continuous theorem obtained. Finally, we provide some consequences of this study.展开更多
In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger type homogeneous model in the periodic distributional space P’. Furthermore, we prove that the solution depends ...In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger type homogeneous model in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously respect to the initial data in P’. Introducing a family of weakly continuous operators, we prove that this family is a group of operators in P’. Then, with this family of operators, we get a fine version of the existence and dependency continuous theorem obtained. Finally, we give some remarks derived from this study.展开更多
Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new f...Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new fractional operators,namely the CaputoFabrizio operator,the Atangana-Baleanu operator,the Sun-Hao-Zhang-Baleanu operator and the generalized Caputo type operator under the frame of the k-Prabhakar fractional integral operator.Usually,the theory of the k-Prabhakar fractional integral is regarded as a much broader than classical fractional operator.Here,we firstly give a series expansion of the k-Prabhakar fractional integral by means of the k-Riemann-Liouville integral.Then,a connection between the k-Prabhakar fractional integral and the four new fractional operators of the above mentioned was shown,respectively.In terms of the above analysis,we can obtain this a basic fact that it only needs to consider the k-Prabhakar fractional integral to cover these results from the four new fractional operators.展开更多
In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis...In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis. Various related properties are explored. Finally, some computations of picture fuzzy functions over generalized picture fuzzy variables are illustrated by using our proposed technique.展开更多
In the article we consider the fractional maximal operator Mα, 0 ≤α 〈 Q on any Carnot group G (i.e., nilpotent stratified Lie group) in the generalized Morrey spaces Mp,φ(G), where Q is the homogeneous dimens...In the article we consider the fractional maximal operator Mα, 0 ≤α 〈 Q on any Carnot group G (i.e., nilpotent stratified Lie group) in the generalized Morrey spaces Mp,φ(G), where Q is the homogeneous dimension of G. We find the conditions on the pair (φ1, φ2) which ensures the boundedness of the operator Ms from one generalized Morrey space Mp,φ1 (G) to another Mq,φ2 (G), 1. 〈 p ≤q 〈 ∞. 1/p - 1/q = α/Q, and from the space M1,φ1 (G) to the weak space Wq,φ2 (G), 1 〈 q 〈 ∞, 1 - 1/q = α/Q. Also find conditions on the φ which ensure the Adams type boundedness of the Ms from M α (G) from Mp,φ^1/p(G)to Mq,φ^1/q(G) for 1 〈p〈q〈∞ and fromM1,φ(G) toWMq,φ^1/q(G)for 1〈q〈∞. In the case b ∈ BMO(G) and 1 〈 p 〈 q 〈 ∞, find the sufficient conditions on the pair (φ1, φ2) which ensures the boundedness of the kth-order commutator operator Mb,α,k from Mp,φ1 (G) to Mq,φ2(G) with 1/p - 1/q = α/Q. Also find the sufficient conditions on the φ which ensures the boundedness of the operator Mb,α,k from Mp,φ^1/p(G) tom Mp,φ^1/p (G) for 1 〈p〈q〈∞. In all the cases the conditions for the boundedness of Mα are given it terms of supremaltype inequalities on (φ1, φ2) and φ , which do not assume any assumption on monotonicity of (φ1, φ2) and φ in r. As applications we consider the SchrSdinger operator -△G + V on G, where the nonnegative potential V belongs to the reverse Holder class B∞(G). The MB,φ1 - Mq,φ2 estimates for the operators V^γ(-△G + V)^-β and V^γ△↓G(-△G + V)^-β are obtained.展开更多
In this paper, we introduce the generalized R oper-Suffridge extension operator for locally biholomorphic mappings. It is sh own that this operator preserves the starlikeness on some Reinhardt domains and does not pre...In this paper, we introduce the generalized R oper-Suffridge extension operator for locally biholomorphic mappings. It is sh own that this operator preserves the starlikeness on some Reinhardt domains and does not preserve convexity for some cases. Meanwhile, the growth theorem and di stortion theorem of the corresponding mappings are given.展开更多
Let A ∈ B(X) and B ∈ B(Y), Me be an operator on Banach space X + Y given by Mc =(A C 0 B)A generalized Drazin spectrum defined by σgD(T) = {λ∈C : T-λI is not generalized Drazin invertible} is considere...Let A ∈ B(X) and B ∈ B(Y), Me be an operator on Banach space X + Y given by Mc =(A C 0 B)A generalized Drazin spectrum defined by σgD(T) = {λ∈C : T-λI is not generalized Drazin invertible} is considered in this paper. It is shown that展开更多
In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma"...In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma" which is quite different from the method in [12] where "the generalized Banach lemma" was used. By the method of the perturba- tion analysis of bounded linear operators, we obtain an explicit perturbation theorem and three inequalities about error estimates for the Moore-Penrose metric generalized inverse of bounded linear operator under the generalized Neumann lemma and the concept of stable perturbations in Banach spaces.展开更多
The relation between generalized operators and operator-valued distributions is discussed so that these two viewpoints can be used alternatively to explain quantum fields.
In this paper, we first introduce a new class of generalized accretive operators named (H,η)-accretive in Banach space. By studying the properties of (H,η)-accretive, we extend the concept of resolvent operators...In this paper, we first introduce a new class of generalized accretive operators named (H,η)-accretive in Banach space. By studying the properties of (H,η)-accretive, we extend the concept of resolvent operators associated with m-accretive operators to the new (H,η)-accretive operators. In terms of the new resolvent operator technique, we prove the existence and uniqueness of solutions for this new system of variational inclusions. We also construct a new algorithm for approximating the solution of this system and discuss the convergence of the sequence of iterates generated by the algorithm.展开更多
Let A be a subalgebra of B(X) containing the identity operator I and an idempotent P. Suppose that α,β: A →A are ring epimorphisms and there exists some nest N on 2( such that α(P)(X) and β(P)(X) are ...Let A be a subalgebra of B(X) containing the identity operator I and an idempotent P. Suppose that α,β: A →A are ring epimorphisms and there exists some nest N on 2( such that α(P)(X) and β(P)(X) are non-trivial elements of N. Let A contain all rank one operators in AlgN and δ : A→ B(X) be an additive mapping. It is shown that, if δ is (α, β)-derivable at zero point, then there exists an additive (α, β)-derivation τ : A →β(X) such that δ(A) =τ(A) + α(A)δ(I) for all A∈A. It is also shown that if δ is generalized (α,β)-derivable at zero point, then δ is an additive generalized (α, β)-derivation. Moreover, by use of this result, the additive maps (generalized) (α,β)-derivable at zero point on several nest algebras, are also characterized.展开更多
In this article,we study some characterizations of Toeplitz operators with positive operator-valued function as symbols on the vector-valued generalized Bargmann-Fock spaces Fψ^2.Main results including Fock-Carleson ...In this article,we study some characterizations of Toeplitz operators with positive operator-valued function as symbols on the vector-valued generalized Bargmann-Fock spaces Fψ^2.Main results including Fock-Carleson condition,bounded Toeplitz operators,compact Toeplitz operators,and Toeplitz operators in the Schatten-p class are all considered.展开更多
By extending the usual Wigner operator to the s-parameterized one as 1/4π2 integral (dyduexp [iu(q-Q)+iy(p-P)+is/2yu]) from n=- ∞ to ∞ with s beng a,real parameter,we propose a generalized Weyl quantization...By extending the usual Wigner operator to the s-parameterized one as 1/4π2 integral (dyduexp [iu(q-Q)+iy(p-P)+is/2yu]) from n=- ∞ to ∞ with s beng a,real parameter,we propose a generalized Weyl quantization scheme which accompanies a new generalized s-parameterized ordering rule.This rule recovers P-Q ordering,Q-P ordering,and Weyl ordering of operators in s = 1,1,0 respectively.Hence it differs from the Cahill-Glaubers’ ordering rule which unifies normal ordering,antinormal ordering,and Weyl ordering.We also show that in this scheme the s-parameter plays the role of correlation between two quadratures Q and P.The formula that can rearrange a given operator into its new s-parameterized ordering is presented.展开更多
Let G be a homogeneous group. The author considers the boundedness of commutators generated by the generalized Hardy operators and CMO(G) functions on Herz spaces in the setting of homogeneous group. This article ex...Let G be a homogeneous group. The author considers the boundedness of commutators generated by the generalized Hardy operators and CMO(G) functions on Herz spaces in the setting of homogeneous group. This article extends some known results.展开更多
Compared with the Hamiltonian mechanics and the Lagrangian mechanics,the Birkhoffian mechanics is more general.The Birkhoffian mechanics is discussed on the basis of the generalized fractional operators,which are prop...Compared with the Hamiltonian mechanics and the Lagrangian mechanics,the Birkhoffian mechanics is more general.The Birkhoffian mechanics is discussed on the basis of the generalized fractional operators,which are proposed recently.Therefore,differential equations of motion within generalized fractional operators are established.Then,in order to find the solutions to the differential equations,Noether symmetry,conserved quantity,perturbation to Noether symmetry and adiabatic invariant are investigated.In the end,two applications are given to illustrate the methods and results.展开更多
In this paper by Sobolev imbedding theorem and characterization theorem of generalized operators the existence of P(φ)2 quantum fields as generalized operators is obtained and a rigorous mathematical interpretation o...In this paper by Sobolev imbedding theorem and characterization theorem of generalized operators the existence of P(φ)2 quantum fields as generalized operators is obtained and a rigorous mathematical interpretation of renormalization procedure is given under white noise theory.展开更多
In this paper, by the definition of spirallike mapping of type β and order α ,we discuss that the generalized Roper-Suffridge extension operator preserves spirallikeness of type β and order α in complex Banach spa...In this paper, by the definition of spirallike mapping of type β and order α ,we discuss that the generalized Roper-Suffridge extension operator preserves spirallikeness of type β and order α in complex Banach spaces.展开更多
基金Supported by National Nature Science Foundation in China(12101564,11971425,11801508)Nature Science Foundation of Zhejiang province(LY22A010013)Domestic Visiting Scholar Teacher Professional Development Project(FX2021042)。
文摘The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.In this paper,we introduce a Lie group that the Heisenberg group can be imbedded into and call it generalized complex Heisenberg.We investigate quaternionic analysis on the generalized complex Heisenberg.We also give the Penrose integral formula for k-CF functions and construct the tangential k-Cauchy-Fueter complex.
基金Project supported by the National Natural Science Foundation of China (No. 10671135)the Key Program of the National Natural Science Foundation of China (No. 70831005)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20060610005)
文摘In this paper, a new notion of a generalized H-η-accretive operator is introduced and studied, which provides a unifying framework for the generalized m-accretive operator and the H-η-monotone operator in Banach spaces. A resolvent operator associated with the generalized H-η-accretive operator is defined, and its Lipschitz continuity is shown. As an application, the solvability for a class of variational inclusions involving the generalized H-η-accretive operators in Banach spaces is considered. By using the technique of the resolvent mapping, an iterative algorithm for solving the variational inclusion in Banach spaces is constructed. Under some suitable conditions, it is proven that the solution for the variational inclusion and the convergence of the iterative sequence generated by the algorithm exist.
文摘In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger equation in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously respect to the initial data in P’. Introducing a family of weakly continuous operators, we prove that this family is a semigroup of operators in P’. Then, with this family of operators, we get a fine version of the existence and dependency continuous theorem obtained. Finally, we provide some consequences of this study.
文摘In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger type homogeneous model in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously respect to the initial data in P’. Introducing a family of weakly continuous operators, we prove that this family is a group of operators in P’. Then, with this family of operators, we get a fine version of the existence and dependency continuous theorem obtained. Finally, we give some remarks derived from this study.
基金supported by the NSFC(11971475)the Natural Science Foundation of Jiangsu Province(BK20230708)+2 种基金the Natural Science Foundation for the Universities in Jiangsu Province(23KJB110003)Geng's research was supported by the NSFC(11201041)the China Postdoctoral Science Foundation(2019M651765)。
文摘Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new fractional operators,namely the CaputoFabrizio operator,the Atangana-Baleanu operator,the Sun-Hao-Zhang-Baleanu operator and the generalized Caputo type operator under the frame of the k-Prabhakar fractional integral operator.Usually,the theory of the k-Prabhakar fractional integral is regarded as a much broader than classical fractional operator.Here,we firstly give a series expansion of the k-Prabhakar fractional integral by means of the k-Riemann-Liouville integral.Then,a connection between the k-Prabhakar fractional integral and the four new fractional operators of the above mentioned was shown,respectively.In terms of the above analysis,we can obtain this a basic fact that it only needs to consider the k-Prabhakar fractional integral to cover these results from the four new fractional operators.
文摘In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis. Various related properties are explored. Finally, some computations of picture fuzzy functions over generalized picture fuzzy variables are illustrated by using our proposed technique.
基金partially supported by the grant of Ahi Evran University Scientific Research Projects(FEN 4001.12.0018)partially supported by the grant of Ahi Evran University Scientific Research Projects(FEN 4001.12.0019)+1 种基金by the grant of Science Development Foundation under the President of the Republic of Azerbaijan project EIF-2010-1(1)-40/06-1partially supported by the Scientific and Technological Research Council of Turkey(TUBITAK Project No:110T695)
文摘In the article we consider the fractional maximal operator Mα, 0 ≤α 〈 Q on any Carnot group G (i.e., nilpotent stratified Lie group) in the generalized Morrey spaces Mp,φ(G), where Q is the homogeneous dimension of G. We find the conditions on the pair (φ1, φ2) which ensures the boundedness of the operator Ms from one generalized Morrey space Mp,φ1 (G) to another Mq,φ2 (G), 1. 〈 p ≤q 〈 ∞. 1/p - 1/q = α/Q, and from the space M1,φ1 (G) to the weak space Wq,φ2 (G), 1 〈 q 〈 ∞, 1 - 1/q = α/Q. Also find conditions on the φ which ensure the Adams type boundedness of the Ms from M α (G) from Mp,φ^1/p(G)to Mq,φ^1/q(G) for 1 〈p〈q〈∞ and fromM1,φ(G) toWMq,φ^1/q(G)for 1〈q〈∞. In the case b ∈ BMO(G) and 1 〈 p 〈 q 〈 ∞, find the sufficient conditions on the pair (φ1, φ2) which ensures the boundedness of the kth-order commutator operator Mb,α,k from Mp,φ1 (G) to Mq,φ2(G) with 1/p - 1/q = α/Q. Also find the sufficient conditions on the φ which ensures the boundedness of the operator Mb,α,k from Mp,φ^1/p(G) tom Mp,φ^1/p (G) for 1 〈p〈q〈∞. In all the cases the conditions for the boundedness of Mα are given it terms of supremaltype inequalities on (φ1, φ2) and φ , which do not assume any assumption on monotonicity of (φ1, φ2) and φ in r. As applications we consider the SchrSdinger operator -△G + V on G, where the nonnegative potential V belongs to the reverse Holder class B∞(G). The MB,φ1 - Mq,φ2 estimates for the operators V^γ(-△G + V)^-β and V^γ△↓G(-△G + V)^-β are obtained.
文摘In this paper, we introduce the generalized R oper-Suffridge extension operator for locally biholomorphic mappings. It is sh own that this operator preserves the starlikeness on some Reinhardt domains and does not preserve convexity for some cases. Meanwhile, the growth theorem and di stortion theorem of the corresponding mappings are given.
基金Supported by the National Natural Science Foundation of China(11301077,1117131,11171066 and11226113)Foundation of the Education Department of Fujian Province(JA12074)the Natural ScienceFoundation of Fujian Province(2012J05003)
文摘Let A ∈ B(X) and B ∈ B(Y), Me be an operator on Banach space X + Y given by Mc =(A C 0 B)A generalized Drazin spectrum defined by σgD(T) = {λ∈C : T-λI is not generalized Drazin invertible} is considered in this paper. It is shown that
基金Supported by the Nature Science Foundation of China(11471091 and 11401143)
文摘In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma" which is quite different from the method in [12] where "the generalized Banach lemma" was used. By the method of the perturba- tion analysis of bounded linear operators, we obtain an explicit perturbation theorem and three inequalities about error estimates for the Moore-Penrose metric generalized inverse of bounded linear operator under the generalized Neumann lemma and the concept of stable perturbations in Banach spaces.
文摘The relation between generalized operators and operator-valued distributions is discussed so that these two viewpoints can be used alternatively to explain quantum fields.
文摘In this paper, we first introduce a new class of generalized accretive operators named (H,η)-accretive in Banach space. By studying the properties of (H,η)-accretive, we extend the concept of resolvent operators associated with m-accretive operators to the new (H,η)-accretive operators. In terms of the new resolvent operator technique, we prove the existence and uniqueness of solutions for this new system of variational inclusions. We also construct a new algorithm for approximating the solution of this system and discuss the convergence of the sequence of iterates generated by the algorithm.
文摘Let A be a subalgebra of B(X) containing the identity operator I and an idempotent P. Suppose that α,β: A →A are ring epimorphisms and there exists some nest N on 2( such that α(P)(X) and β(P)(X) are non-trivial elements of N. Let A contain all rank one operators in AlgN and δ : A→ B(X) be an additive mapping. It is shown that, if δ is (α, β)-derivable at zero point, then there exists an additive (α, β)-derivation τ : A →β(X) such that δ(A) =τ(A) + α(A)δ(I) for all A∈A. It is also shown that if δ is generalized (α,β)-derivable at zero point, then δ is an additive generalized (α, β)-derivation. Moreover, by use of this result, the additive maps (generalized) (α,β)-derivable at zero point on several nest algebras, are also characterized.
基金Supported by National Natural Science Foundation of China(11471084,11301101,11971125)Young Innovative Talent Project of Department of Edcucation of Guangdong Province(2017KQNCX220)the Natural Research Project of Zhaoqing University(221622).
文摘In this article,we study some characterizations of Toeplitz operators with positive operator-valued function as symbols on the vector-valued generalized Bargmann-Fock spaces Fψ^2.Main results including Fock-Carleson condition,bounded Toeplitz operators,compact Toeplitz operators,and Toeplitz operators in the Schatten-p class are all considered.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11175113 and 11147009)the Natural Science Foundation of Shandong Province of China (Grant No. ZR2010AQ027)the Program of Higher Educational Science and Technology of Shandong Province,China (Grant No. J10LA15)
文摘By extending the usual Wigner operator to the s-parameterized one as 1/4π2 integral (dyduexp [iu(q-Q)+iy(p-P)+is/2yu]) from n=- ∞ to ∞ with s beng a,real parameter,we propose a generalized Weyl quantization scheme which accompanies a new generalized s-parameterized ordering rule.This rule recovers P-Q ordering,Q-P ordering,and Weyl ordering of operators in s = 1,1,0 respectively.Hence it differs from the Cahill-Glaubers’ ordering rule which unifies normal ordering,antinormal ordering,and Weyl ordering.We also show that in this scheme the s-parameter plays the role of correlation between two quadratures Q and P.The formula that can rearrange a given operator into its new s-parameterized ordering is presented.
基金Supported by Chinese Universities Scientific Fund(2009RC0703 of BUPT)the NNSF of China (10871024)
文摘Let G be a homogeneous group. The author considers the boundedness of commutators generated by the generalized Hardy operators and CMO(G) functions on Herz spaces in the setting of homogeneous group. This article extends some known results.
基金Supported by the Natural Science Foundation of Tongling College(2007tlxykj006) Supported by the Natural Science Foundation of Anhui Province(KJ2010B460)
文摘In this paper,we have obtained the boundedness of maximal Bochner-Riesz operator on generalized Morrey space.Also,it is right for its commutator.
基金This work was supported by the National Natural Science Foun-dation of China(Grants 11802193 and 11972241)the Natural Sci-ence Foundation of Jiangsu Province(Grant BK20191454)the Young Scientific and Technological Talents Promotion Project of Suzhou Association for Science and Technology.
文摘Compared with the Hamiltonian mechanics and the Lagrangian mechanics,the Birkhoffian mechanics is more general.The Birkhoffian mechanics is discussed on the basis of the generalized fractional operators,which are proposed recently.Therefore,differential equations of motion within generalized fractional operators are established.Then,in order to find the solutions to the differential equations,Noether symmetry,conserved quantity,perturbation to Noether symmetry and adiabatic invariant are investigated.In the end,two applications are given to illustrate the methods and results.
基金Project supported by NSFC (10171035) and Hubei University Youth Foundation (97A012)
文摘In this paper by Sobolev imbedding theorem and characterization theorem of generalized operators the existence of P(φ)2 quantum fields as generalized operators is obtained and a rigorous mathematical interpretation of renormalization procedure is given under white noise theory.
文摘In this paper, by the definition of spirallike mapping of type β and order α ,we discuss that the generalized Roper-Suffridge extension operator preserves spirallikeness of type β and order α in complex Banach spaces.