In this paper, the existence and the uniqueness of the local generalized solution and the local classical solution of the Cauchy problem for the generalized BBM-Burgers equationare proved. The existence and the unique...In this paper, the existence and the uniqueness of the local generalized solution and the local classical solution of the Cauchy problem for the generalized BBM-Burgers equationare proved. The existence and the uniqueness of the global generalized solution and the global classical solution for the Cauchy problem of equation (1) are proved when n = 3, 2, 1. Moreover, the decay property of the solution is discussed.展开更多
In this article, the existence, uniqueness and regularities of the global generalized solution and global classical solution for the periodic boundary value problem and the Cauchy problem of the general cubic double d...In this article, the existence, uniqueness and regularities of the global generalized solution and global classical solution for the periodic boundary value problem and the Cauchy problem of the general cubic double dispersion equationutt - uxx - auxxtt + bux4 - duxxt = f(u)xxare proved, and the sufficient conditions of blow-up of the solutions for the Cauchy problems in finite time are given.展开更多
This article studies on Cauchy’s function f (z) and its integral, (2πi)J[ f (z)] ≡ ■C f (t)dt/(t z) taken along a closed simple contour C, in regard to their comprehensive properties over the entire z =...This article studies on Cauchy’s function f (z) and its integral, (2πi)J[ f (z)] ≡ ■C f (t)dt/(t z) taken along a closed simple contour C, in regard to their comprehensive properties over the entire z = x + iy plane consisted of the simply connected open domain D + bounded by C and the open domain D outside C. (1) With f (z) assumed to be C n (n ∞-times continuously differentiable) z ∈ D + and in a neighborhood of C, f (z) and its derivatives f (n) (z) are proved uniformly continuous in the closed domain D + = [D + + C]. (2) Cauchy’s integral formulas and their derivatives z ∈ D + (or z ∈ D ) are proved to converge uniformly in D + (or in D = [D +C]), respectively, thereby rendering the integral formulas valid over the entire z-plane. (3) The same claims (as for f (z) and J[ f (z)]) are shown extended to hold for the complement function F(z), defined to be C n z ∈ D and about C. (4) The uniform convergence theorems for f (z) and F(z) shown for arbitrary contour C are adapted to find special domains in the upper or lower half z-planes and those inside and outside the unit circle |z| = 1 such that the four general- ized Hilbert-type integral transforms are proved. (5) Further, the singularity distribution of f (z) in D is elucidated by considering the direct problem exemplified with several typ- ical singularities prescribed in D . (6) A comparative study is made between generalized integral formulas and Plemelj’s formulas on their differing basic properties. (7) Physical sig- nificances of these formulas are illustrated with applicationsto nonlinear airfoil theory. (8) Finally, an unsolved inverse problem to determine all the singularities of Cauchy function f (z) in domain D , based on the continuous numerical value of f (z) z ∈ D + = [D + + C], is presented for resolution as a conjecture.展开更多
In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a m...In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a mapping from a commutative group(G,+)to a 2-Banach space(Y,||·,·||).Our results are generalizations of main results of Brzdȩk and Ciepliński[J Brzdȩk,K Ciepliński.On a fixed point theorem in 2-normed spaces and some of its applications.Acta Mathematica Scientia,2018,38B(2):377-390].展开更多
In this article, we prove hyperstability results of the generalized Cauchy-Jensen functional equation αf(x+y/α+z)=f(x)+y(y)+αf(z)for any fixed positive integer α> 2 in ultrametric Banach spaces by using fixed p...In this article, we prove hyperstability results of the generalized Cauchy-Jensen functional equation αf(x+y/α+z)=f(x)+y(y)+αf(z)for any fixed positive integer α> 2 in ultrametric Banach spaces by using fixed point method.展开更多
In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve ...In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve the same conservation as that for the exact solution.The stability and convergence of the proposed scheme are proved.Numerical results demonstrate the efficiency of this approach.We also establish some basic results on the generalized Laguerre-spherical harmonic orthogonal approximation,which play an important role in spectral methods for various problems defined on the whole space and unbounded domains with spherical geometry.展开更多
This article, first gives the estimaties of two modulus, namely, generalized Lebesgue constant and modulus of generalized singular integral quadrature formulas, then applies them to obtain the error bounds of the oper...This article, first gives the estimaties of two modulus, namely, generalized Lebesgue constant and modulus of generalized singular integral quadrature formulas, then applies them to obtain the error bounds of the operator BL^Pm to the operator B.展开更多
In this paper, we consider nonnegative solutions to Cauchy problem for the general nonlinear filtration equations ut -Dj (α^ij (x, t, u)Diψ(u)) +b^i (t, u)Diu+C(x, t, u) = 0, and obtain the existence, un...In this paper, we consider nonnegative solutions to Cauchy problem for the general nonlinear filtration equations ut -Dj (α^ij (x, t, u)Diψ(u)) +b^i (t, u)Diu+C(x, t, u) = 0, and obtain the existence, uniqueness and blow-up in finite time of these solutions under some structure conditions.展开更多
In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within...In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data.展开更多
基金supported by the National Natural Science Foundation of China(11226175,11271336 and 11171311)Specialized Reseach Fund for the Docotoral Program of Higher Education(20124301120002)Foundation of He’nan Educational Committee(2009C110006)
文摘In this paper, the existence and the uniqueness of the local generalized solution and the local classical solution of the Cauchy problem for the generalized BBM-Burgers equationare proved. The existence and the uniqueness of the global generalized solution and the global classical solution for the Cauchy problem of equation (1) are proved when n = 3, 2, 1. Moreover, the decay property of the solution is discussed.
文摘In this article, the existence, uniqueness and regularities of the global generalized solution and global classical solution for the periodic boundary value problem and the Cauchy problem of the general cubic double dispersion equationutt - uxx - auxxtt + bux4 - duxxt = f(u)xxare proved, and the sufficient conditions of blow-up of the solutions for the Cauchy problems in finite time are given.
文摘This article studies on Cauchy’s function f (z) and its integral, (2πi)J[ f (z)] ≡ ■C f (t)dt/(t z) taken along a closed simple contour C, in regard to their comprehensive properties over the entire z = x + iy plane consisted of the simply connected open domain D + bounded by C and the open domain D outside C. (1) With f (z) assumed to be C n (n ∞-times continuously differentiable) z ∈ D + and in a neighborhood of C, f (z) and its derivatives f (n) (z) are proved uniformly continuous in the closed domain D + = [D + + C]. (2) Cauchy’s integral formulas and their derivatives z ∈ D + (or z ∈ D ) are proved to converge uniformly in D + (or in D = [D +C]), respectively, thereby rendering the integral formulas valid over the entire z-plane. (3) The same claims (as for f (z) and J[ f (z)]) are shown extended to hold for the complement function F(z), defined to be C n z ∈ D and about C. (4) The uniform convergence theorems for f (z) and F(z) shown for arbitrary contour C are adapted to find special domains in the upper or lower half z-planes and those inside and outside the unit circle |z| = 1 such that the four general- ized Hilbert-type integral transforms are proved. (5) Further, the singularity distribution of f (z) in D is elucidated by considering the direct problem exemplified with several typ- ical singularities prescribed in D . (6) A comparative study is made between generalized integral formulas and Plemelj’s formulas on their differing basic properties. (7) Physical sig- nificances of these formulas are illustrated with applicationsto nonlinear airfoil theory. (8) Finally, an unsolved inverse problem to determine all the singularities of Cauchy function f (z) in domain D , based on the continuous numerical value of f (z) z ∈ D + = [D + + C], is presented for resolution as a conjecture.
基金This work was supported by Research Professional Development Project under the Science Achievement Scholarship of Thailand(SAST)and Thammasat University Research Fund,Contract No.TUGG 33/2562The second author would like to thank the Thailand Research Fund and Office of the Higher Education Commission under grant no.MRG6180283 for financial support during the preparation of this manuscript.
文摘In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a mapping from a commutative group(G,+)to a 2-Banach space(Y,||·,·||).Our results are generalizations of main results of Brzdȩk and Ciepliński[J Brzdȩk,K Ciepliński.On a fixed point theorem in 2-normed spaces and some of its applications.Acta Mathematica Scientia,2018,38B(2):377-390].
基金Science Achievement Scholarship of Thailand, which provides funding for research
文摘In this article, we prove hyperstability results of the generalized Cauchy-Jensen functional equation αf(x+y/α+z)=f(x)+y(y)+αf(z)for any fixed positive integer α> 2 in ultrametric Banach spaces by using fixed point method.
基金supported in part by NSF of China N.10871131The Science and Technology Commission of Shanghai Municipality,Grant N.075105118+1 种基金Shanghai Leading Academic Discipline Project N.T0401Fund for E-institute of Shanghai Universities N.E03004.
文摘In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve the same conservation as that for the exact solution.The stability and convergence of the proposed scheme are proved.Numerical results demonstrate the efficiency of this approach.We also establish some basic results on the generalized Laguerre-spherical harmonic orthogonal approximation,which play an important role in spectral methods for various problems defined on the whole space and unbounded domains with spherical geometry.
文摘This article, first gives the estimaties of two modulus, namely, generalized Lebesgue constant and modulus of generalized singular integral quadrature formulas, then applies them to obtain the error bounds of the operator BL^Pm to the operator B.
基金Foundation item: Supported by National Science Foundation of China(10572156) Supported by Natural Science Foundation of Henan Province(0211010900) Supported by National Science Foundation of Department of Education of Henan Province(200510465001)
文摘In this paper, we consider nonnegative solutions to Cauchy problem for the general nonlinear filtration equations ut -Dj (α^ij (x, t, u)Diψ(u)) +b^i (t, u)Diu+C(x, t, u) = 0, and obtain the existence, uniqueness and blow-up in finite time of these solutions under some structure conditions.
基金the Natural Science Foundation of Shandong Province of China(Grant No.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140)the Key Laboratory ofRoad Construction Technology and Equipment(Chang’an University,No.300102253502).
文摘In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data.