In this paper, we introduce a numerical treatment using generalized Euler method (GEM) for the non-linear programming problem which is governed by a system of fractional differential equations (FDEs). The appeared fra...In this paper, we introduce a numerical treatment using generalized Euler method (GEM) for the non-linear programming problem which is governed by a system of fractional differential equations (FDEs). The appeared fractional derivatives in these equations are in the Caputo sense. We compare our numerical solutions with those numerical solutions using RK4 method. The obtained numerical results of the optimization problem model show the simplicity and the efficiency of the proposed scheme.展开更多
为将Lehmer同余式从模奇质数平方推广至模任意数的平方,Cai等(CAI T X, FU X D, ZHOU X. Acta Aritmetica,2002,103(3):203-214.)定义了广义欧拉函数φ e (n).最近Cai等给出了 e=3,4,6 时广义欧拉函数φ e (n)的计算公式.利用初等数论...为将Lehmer同余式从模奇质数平方推广至模任意数的平方,Cai等(CAI T X, FU X D, ZHOU X. Acta Aritmetica,2002,103(3):203-214.)定义了广义欧拉函数φ e (n).最近Cai等给出了 e=3,4,6 时广义欧拉函数φ e (n)的计算公式.利用初等数论与组合的方法和技巧,完全确定了一类广义欧拉函数的计算公式,即给出当 e 为 n 的特殊正因数时,φ e (n)的准确计算公式,从而推广Cai等的相关主要结果,并由此给出φ e (n)为偶数的一个充分必要条件.展开更多
文摘In this paper, we introduce a numerical treatment using generalized Euler method (GEM) for the non-linear programming problem which is governed by a system of fractional differential equations (FDEs). The appeared fractional derivatives in these equations are in the Caputo sense. We compare our numerical solutions with those numerical solutions using RK4 method. The obtained numerical results of the optimization problem model show the simplicity and the efficiency of the proposed scheme.
文摘为将Lehmer同余式从模奇质数平方推广至模任意数的平方,Cai等(CAI T X, FU X D, ZHOU X. Acta Aritmetica,2002,103(3):203-214.)定义了广义欧拉函数φ e (n).最近Cai等给出了 e=3,4,6 时广义欧拉函数φ e (n)的计算公式.利用初等数论与组合的方法和技巧,完全确定了一类广义欧拉函数的计算公式,即给出当 e 为 n 的特殊正因数时,φ e (n)的准确计算公式,从而推广Cai等的相关主要结果,并由此给出φ e (n)为偶数的一个充分必要条件.